Chen Zhiyuan, Nguyen Khanh, Kowalik Grant, Shi Xinyu, Tian Jinbi, Doshi Mitansh, Alber Bridget R, Guan Xun, Liu Xitong, Ning Xin, Kay Matthew W, Lu Luyao
Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.
Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
Adv Mater Technol. 2023 May 25;8(10). doi: 10.1002/admt.202201716. Epub 2023 Apr 2.
Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk-free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high-fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold-coated silver nanowires (Au─Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au─Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2-7.5 Ω cm, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.
透明微电极因其在对细胞/组织活动进行并行无串扰电和光检测方面的独特优势而受到生物医学界的广泛关注。尽管在构建透明微电极方面取得了最新进展,但一个主要挑战是要同时实现理想的机械拉伸性、光学透明度、电化学性能和化学稳定性,以便与软组织/器官系统进行高保真、共形和稳定的接口连接。为应对这一挑战,我们通过结合材料、制造和力学方面的技术进步,设计了带有金涂层银纳米线(Au─Ag NWs)的微电极阵列(MEAs)。金涂层在仅对光学性能有轻微改变的情况下,提高了Au─Ag NW微电极的化学稳定性和电化学阻抗。这些MEA在550 nm处具有大于80%的高光学透明度、1 kHz时归一化电化学阻抗低至1.2 - 7.5 Ω cm、在暴露于氧等离子体5分钟以及在20%应变下进行600次循环拉伸后具有稳定的化学和机电性能,优于其他透明微电极替代品。这些MEA能够轻松贴合心脏的曲线表面,用于对心脏功能进行电生理和光学的共定位映射。这项工作表明,可拉伸透明金属纳米线MEA是多种生物医学科学和工程应用的有前途的候选者,特别是在机械动态条件下。