Suppr超能文献

通过使用多尺度 CNN 分析 EEG 信号预测人类意图-行为。

Predicting Human Intention-Behavior Through EEG Signal Analysis Using Multi-Scale CNN.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1722-1729. doi: 10.1109/TCBB.2020.3039834. Epub 2021 Oct 7.

Abstract

At present, the application of Electroencephalogram (EEG) signal classification to human intention-behavior prediction has become a hot topic in the brain computer interface (BCI) research field. In recent studies, the introduction of convolutional neural networks (CNN) has contributed to substantial improvements in the EEG signal classification performance. However, there is still a key challenge with the existing CNN-based EEG signal classification methods, the accuracy of them is not very satisfying. This is because most of the existing methods only utilize the feature maps in the last layer of CNN for EEG signal classification, which might miss some local and detailed information for accurate classification. To address this challenge, this paper proposes a multi-scale CNN model-based EEG signal classification method. In this method, first, the EEG signals are preprocessed and converted to time-frequency images using the short-time Fourier Transform (STFT) technique. Then, a multi-scale CNN model is designed for EEG signal classification, which takes the converted time-frequency image as the input. Especially, in the designed multi-scale CNN model, both the local and global information is taken into consideration. The performance of the proposed method is verified on the benchmark data set 2b used in the BCI contest IV. The experimental results show that the average accuracy of the proposed method is 73.9 percent, which improves the classification accuracy of 10.4, 5.5, 16.2 percent compared with the traditional methods including artificial neural network, support vector machine, and stacked auto-encoder.

摘要

目前,将脑电图(EEG)信号分类应用于人类意图行为预测已经成为脑机接口(BCI)研究领域的热门话题。在最近的研究中,卷积神经网络(CNN)的引入极大地提高了 EEG 信号分类性能。然而,现有的基于 CNN 的 EEG 信号分类方法仍然存在一个关键挑战,即它们的准确性不是很令人满意。这是因为大多数现有的方法仅使用 CNN 最后一层的特征图进行 EEG 信号分类,这可能会错过一些用于准确分类的局部和详细信息。为了解决这一挑战,本文提出了一种基于多尺度 CNN 模型的 EEG 信号分类方法。在该方法中,首先使用短时傅里叶变换(STFT)技术对 EEG 信号进行预处理并转换为时频图像。然后,设计了一个用于 EEG 信号分类的多尺度 CNN 模型,该模型以转换后的时频图像作为输入。特别是,在所设计的多尺度 CNN 模型中,同时考虑了局部和全局信息。该方法的性能在 BCI 竞赛 IV 中使用的基准数据集 2b 上进行了验证。实验结果表明,所提出方法的平均准确率为 73.9%,与包括人工神经网络、支持向量机和堆叠自动编码器在内的传统方法相比,分类准确率提高了 10.4%、5.5%和 16.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验