文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

普鲁兰短梗霉FRR 5284利用低成本甘蔗废蜜高效生产转果糖基酶。

Highly efficient production of transfructosylating enzymes using low-cost sugarcane molasses by A. pullulans FRR 5284.

作者信息

Khatun Most Sheauly, Hassanpour Morteza, Harrison Mark D, Speight Robert E, O'Hara Ian M, Zhang Zhanying

机构信息

Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.

School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.

出版信息

Bioresour Bioprocess. 2021 Jun 11;8(1):48. doi: 10.1186/s40643-021-00399-x.


DOI:10.1186/s40643-021-00399-x
PMID:38650217
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10992317/
Abstract

Fructooligosaccharides (FOS) are a type of important prebiotics and produced by transfructosylating enzymes. In this study, sugarcane molasses was used as the substrate for production of transfructosylating enzymes by Aureobasidium pullulans FRR 5284. NaNO was a superior nitrogen source to yeast extract for production of transfructosylating enzymes by A. pullulans FRR 5284 and decreasing the ratio of NaNO to yeast extract nitrogen from 1:0 to 1:1 resulted in the reduction of the total transfructosylating activity from 109.8 U/mL to 82.5 U/mL. The addition of only 4.4 g/L NaNO into molasses-based medium containing 100 g/L mono- and di-saccharides resulted in total transfructosylating activity of 123.8 U/mL. Scale-up of the A. pullulans FRR 5284 transfructosylating enzyme production process from shake flasks to 1 L bioreactors improved the enzyme activity and productivity to 171.7 U/mL and 3.58 U/mL/h, 39% and 108% higher than those achieved from shake flasks, respectively. Sucrose (500 g/L) was used as a substrate for extracellular, intracellular, and total A. pullulans FRR 5284 transfructosylating enzymes, with a maximum yield of 61%. Intracellular, extracellular, and total A. pullulans FRR 5284 transfructosylating enzymes from different production systems resulted in different FOS profiles, indicating that FOS profiles can be controlled by adjusting intracellular and extracellular enzyme ratios and, hence prebiotic activity.

摘要

低聚果糖(FOS)是一类重要的益生元,由转果糖基酶产生。在本研究中,甘蔗 molasses 被用作 Aureobasidium pullulans FRR 5284 生产转果糖基酶的底物。对于 Aureobasidium pullulans FRR 5284 生产转果糖基酶而言,NaNO 是比酵母提取物更优的氮源,将 NaNO 与酵母提取物氮的比例从 1:0 降至 1:1 导致总转果糖基酶活性从 109.8 U/mL 降至 82.5 U/mL。在含有 100 g/L 单糖和二糖的 molasses 基培养基中仅添加 4.4 g/L NaNO,可使总转果糖基酶活性达到 123.8 U/mL。将 Aureobasidium pullulans FRR 5284 转果糖基酶生产过程从摇瓶放大至 1 L 生物反应器,可将酶活性和生产力分别提高至 171.7 U/mL 和 3.58 U/mL/h,分别比摇瓶培养提高了 39% 和 108%。蔗糖(500 g/L)用作 Aureobasidium pullulans FRR 5284 细胞外、细胞内和总转果糖基酶的底物,最大产率为 61%。来自不同生产系统的 Aureobasidium pullulans FRR 5284 细胞内、细胞外和总转果糖基酶产生不同的 FOS 谱,表明可通过调节细胞内和细胞外酶的比例来控制 FOS 谱,进而控制益生元活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/a058e134de27/40643_2021_399_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/8975721746b3/40643_2021_399_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/d39762c118ca/40643_2021_399_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/6f492451c7f1/40643_2021_399_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/15253074e694/40643_2021_399_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/a058e134de27/40643_2021_399_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/8975721746b3/40643_2021_399_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/d39762c118ca/40643_2021_399_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/6f492451c7f1/40643_2021_399_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/15253074e694/40643_2021_399_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff1/10992317/a058e134de27/40643_2021_399_Fig5_HTML.jpg

相似文献

[1]
Highly efficient production of transfructosylating enzymes using low-cost sugarcane molasses by A. pullulans FRR 5284.

Bioresour Bioprocess. 2021-6-11

[2]
Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A.

Bioresour Bioprocess. 2021-9-3

[3]
Production of beta-fructofuranosidase with transfructosylating activity for fructooligosaccharides synthesis by Aspergillus japonicus NTU-1249.

Proc Natl Sci Counc Repub China B. 1991-7

[4]
Metabolome- and genome-scale model analyses for engineering of to enhance polymalic acid and malic acid production from sugarcane molasses.

Biotechnol Biofuels. 2018-4-4

[5]
Production of fructooligosaccharides by crude enzyme preparations of beta-fructofuranosidase from Aureobasidium pullulans.

Biotechnol Lett. 2008-3

[6]
Sugarcane molasses and yeast powder used in the Fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611.

J Ind Microbiol Biotechnol. 2006-12

[7]
Production of cellulases by LB83: optimization, characterization, and hydrolytic potential for the production of cellulosic sugars.

Prep Biochem Biotechnol. 2021

[8]
Short-Chain Fructooligosaccharide Synthesis from Sugarcane Syrup with Commercial Enzyme Preparations and Some Physical and Antioxidation Properties of the Syrup and Syrup Powder.

Foods. 2023-7-29

[9]
Beet sugar syrup and molasses as low-cost feedstock for the enzymatic production of fructo-oligosaccharides.

J Agric Food Chem. 2006-4-19

[10]
A molasses habitat-derived fungus Aspergillus tubingensis XG21 with high β-fructofuranosidase activity and its potential use for fructooligosaccharides production.

AMB Express. 2017-12

引用本文的文献

[1]
Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A.

Bioresour Bioprocess. 2021-9-3

[2]
Protective effects of Aureobasidium pullulans lysate on UV-damaged human skin fibroblasts and HaCaT cells.

Bioresour Bioprocess. 2023-8-28

本文引用的文献

[1]
A Review Regarding the Use of Molasses in Animal Nutrition.

Animals (Basel). 2021-1-7

[2]
Efficient Conversion of Cane Molasses into Fructooligosaccharides by a Glucose Derepression Mutant of with High β-Fructofuranosidase Activity.

J Agric Food Chem. 2019-11-26

[3]
Process development for the production of prebiotic fructo-oligosaccharides by penicillium citreonigrum.

Bioresour Technol. 2019-3-12

[4]
Overproduction of a β-fructofuranosidase1 with a high FOS synthesis activity for efficient biosynthesis of fructooligosaccharides.

Int J Biol Macromol. 2019-3-6

[5]
-Fructofuranosidase and -D-Fructosyltransferase from New PC-4 Strain Isolated from Canned Peach Syrup: Effect of Carbon and Nitrogen Sources on Enzyme Production.

ScientificWorldJournal. 2019-1-8

[6]
Dietary fructooligosaccharide can mitigate the negative effects of immunity on Chinese mitten crab fed a high level of plant protein diet.

Fish Shellfish Immunol. 2018-9-26

[7]
A molasses habitat-derived fungus Aspergillus tubingensis XG21 with high β-fructofuranosidase activity and its potential use for fructooligosaccharides production.

AMB Express. 2017-12

[8]
Highly Efficient Fructooligosaccharides Production by an Erythritol-Producing Yeast Yarrowia lipolytica Displaying Fructosyltransferase.

J Agric Food Chem. 2016-5-18

[9]
Biotechnological production and application of fructooligosaccharides.

Crit Rev Biotechnol. 2016

[10]
Fructo-oligosaccharides: Production, Purification and Potential Applications.

Crit Rev Food Sci Nutr. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索