Thome Carolin D, Tausche Patrick, Hohenberger Katja, Yang Zuqin, Krammer Susanne, Trufa Denis I, Sirbu Horia, Schmidt Joachim, Finotto Susetta
Department of Molecular Pneumology, University Medical School Hospital Erlangen (UKER) Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany.
Department of Thoracic Surgery, University Medical School Hospital Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.
Front Immunol. 2024 Apr 8;15:1328263. doi: 10.3389/fimmu.2024.1328263. eCollection 2024.
Despite therapy advances, one of the leading causes of cancer deaths still remains lung cancer. To improve current treatments or prevent non-small cell lung cancer (NSCLC), the role of the nutrition in cancer onset and progression needs to be understood in more detail. While in colorectal cancer, the influence of local microbiota derived SCFAs have been well investigated, the influence of SCFA on lung cancer cells via peripheral blood immune system should be investigated more deeply. In this respect, nutrients absorbed via the gut might affect the tumor microenvironment (TME) and thus play an important role in tumor cell growth.
This study focuses on the impact of the short-chain fatty acid (SCFA) Sodium Butyrate (SB), on lung cancer cell survival. We previously described a pro-tumoral role of glucose on A549 lung adenocarcinoma cell line. In this study, we wanted to know if SB would counteract the effect of glucose and thus cultured A549 and H520 with and without SB in the presence or absence of glucose and investigated how the treatment with SB affects the survival of lung cancer cells and its influence on immune cells fighting against lung cancer.
In this study, we performed cell culture experiments with A549, H520 and NSCLC-patient-derived epithelial cells under different SB levels. To investigate the influence on the immune system, we performed culture of peripheral mononuclear blood cells (PBMC) from control, smoker and lung cancer patients with increasing SB concentrations.
To investigate the effect of SB on lung tumor cells, we first analyzed the effect of 6 different concentrations of SB on A549 cells at 48 and 72 hours cell culture. Here we found that, SB treatment reduced lung cancer cell survival in a concentration dependent manner. We next focused our deeper analysis on the two concentrations, which caused the maximal reduction in cell survival. Here, we observed that SB led to cell cycle arrest and induced early apoptosis in A549 lung cancer cells. The expression of cell cycle regulatory proteins and A549 lung cancer stem cell markers (CD90) was induced. Additionally, this study explored the role of interferon-gamma (IFN-γ) and its receptor (IFN-γ-R1) in combination with SB treatment, revealing that, although IFN-γ-R1 expression was increased, IFN-γ did not affect the efficacy of SB in reducing tumor cell viability. Furthermore, we examined the effects of SB on immune cells, specifically CD8+ T cells and natural killer (NK) cells from healthy individuals, smokers, and NSCLC patients. SB treatment resulted in a decreased production of IFN-γ and granzyme B in CD8+ T cells and NK cells. Moreover, SB induced IFN-γ-R1 in NK cells and CD4+ T cells in the absence of glucose both in PBMCs from controls and NSCLC subjects.
Overall, this study highlights the potential of SB in inhibiting lung cancer cell growth, triggering apoptosis, inducing cell cycle arrest, and modulating immune responses by activating peripheral blood CD4+ T cells while selectively inducing IFN-γ-R1 in NK cells in peripheral blood and inhibiting peripheral blood CD8+ T cells and NK cells. Thus, understanding the mechanisms of action of SB in the TME and its influence on the immune system provide valuable insights of potentially considering SB as a candidate for adjunctive therapies in NSCLC.
尽管治疗方法不断进步,但肺癌仍是导致癌症死亡的主要原因之一。为了改进当前的治疗方法或预防非小细胞肺癌(NSCLC),需要更详细地了解营养在癌症发生和发展中的作用。虽然在结直肠癌中,已对源自局部微生物群的短链脂肪酸(SCFA)的影响进行了充分研究,但SCFA通过外周血免疫系统对肺癌细胞的影响仍需更深入地研究。在这方面,通过肠道吸收的营养物质可能会影响肿瘤微环境(TME),从而在肿瘤细胞生长中发挥重要作用。
本研究聚焦于短链脂肪酸丁酸钠(SB)对肺癌细胞存活的影响。我们之前描述了葡萄糖对A549肺腺癌细胞系的促肿瘤作用。在本研究中,我们想了解SB是否会抵消葡萄糖的作用,因此在有或无葡萄糖的情况下,用有或无SB培养A549和H520细胞,并研究SB处理如何影响肺癌细胞的存活及其对对抗肺癌的免疫细胞的影响。
在本研究中,我们在不同SB水平下对A549、H520和源自NSCLC患者的上皮细胞进行了细胞培养实验。为了研究对免疫系统的影响,我们用浓度递增的SB培养来自对照、吸烟者和肺癌患者的外周血单个核细胞(PBMC)。
为了研究SB对肺肿瘤细胞的影响,我们首先在细胞培养48小时和72小时时分析了6种不同浓度的SB对A549细胞的影响。在此我们发现,SB处理以浓度依赖的方式降低了肺癌细胞的存活率。接下来,我们将更深入的分析集中在导致细胞存活率最大降低的两种浓度上。在此,我们观察到SB导致A549肺癌细胞的细胞周期停滞并诱导早期凋亡。诱导了细胞周期调节蛋白和A549肺癌干细胞标志物(CD90)的表达。此外,本研究探讨了干扰素-γ(IFN-γ)及其受体(IFN-γ-R1)与SB联合治疗的作用,结果显示,虽然IFN-γ-R1表达增加,但IFN-γ并不影响SB降低肿瘤细胞活力的疗效。此外,我们研究了SB对免疫细胞的影响,特别是来自健康个体、吸烟者和NSCLC患者的CD8 + T细胞和自然杀伤(NK)细胞。SB处理导致CD8 + T细胞和NK细胞中IFN-γ和颗粒酶B的产生减少。此外,在无葡萄糖的情况下,SB在来自对照和NSCLC受试者的PBMC中诱导NK细胞和CD4 + T细胞中的IFN-γ-R1。
总体而言,本研究突出了SB在抑制肺癌细胞生长、触发凋亡、诱导细胞周期停滞以及通过激活外周血CD + T细胞同时在外周血NK细胞中选择性诱导IFN-γ-R1并抑制外周血CD8 + T细胞和NK细胞来调节免疫反应方面的潜力。因此,了解SB在TME中的作用机制及其对免疫系统的影响为将SB作为NSCLC辅助治疗候选药物的潜在考虑提供了有价值的见解。