Scalzone Annachiara, Sanjurjo-Rodríguez Clara, Berlinguer-Palmini Rolando, Dickinson Anne M, Jones Elena, Wang Xiao-Nong, Crossland Rachel E
Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
Centre for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, 80125 Napoli, Italy.
Bioengineering (Basel). 2024 Apr 17;11(4):388. doi: 10.3390/bioengineering11040388.
Osteoarthritis (OA) is a degenerative joint disease, causing impaired mobility. There are currently no effective therapies other than palliative treatment. Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have shown promise in attenuating OA progression, promoting chondral regeneration, and modulating joint inflammation. However, the precise molecular mechanism of action driving their beneficial effects has not been fully elucidated. In this study, we analyzed MSC-EV-treated human OA chondrocytes (OACs) to assess viability, proliferation, migration, cytokine and catabolic protein expression, and microRNA and mRNA profiles. We observed that MSC-EV-treated OACs displayed increased metabolic activity, proliferation, and migration compared to the controls. They produced decreased proinflammatory (Il-8 and IFN-γ) and increased anti-inflammatory (IL-13) cytokines, and lower levels of MMP13 protein coupled with reduced expression of MMP13 mRNA, as well as negative microRNA regulators of chondrogenesis (miR-145-5p and miR-21-5p). In 3D models, MSC-EV-treated OACs exhibited enhanced chondrogenesis-promoting features (elevated sGAG, ACAN, and aggrecan). MSC-EV treatment also reversed the pathological impact of IL-1β on chondrogenic gene expression and extracellular matrix component (ECM) production. Finally, MSC-EV-treated OACs demonstrated the enhanced expression of genes associated with cartilage function, collagen biosynthesis, and ECM organization and exhibited a signature of 24 differentially expressed microRNAs, associated with chondrogenesis-associated pathways and ECM interactions. In conclusion, our data provide new insights on the potential mechanism of action of MSC-EVs as a treatment option for early-stage OA, including transcriptomic analysis of MSC-EV-treated OA, which may pave the way for more targeted novel therapeutics.
骨关节炎(OA)是一种退行性关节疾病,会导致行动能力受损。目前除了姑息治疗外没有有效的疗法。间充质基质细胞(MSCs)及其分泌的细胞外囊泡(MSC-EVs)在减轻OA进展、促进软骨再生和调节关节炎症方面显示出前景。然而,驱动其有益作用的确切分子作用机制尚未完全阐明。在本研究中,我们分析了经MSC-EV处理的人OA软骨细胞(OACs),以评估其活力、增殖、迁移、细胞因子和分解代谢蛋白表达以及微小RNA和信使核糖核酸谱。我们观察到,与对照组相比,经MSC-EV处理的OACs表现出代谢活性、增殖和迁移增加。它们产生的促炎细胞因子(白细胞介素-8和干扰素-γ)减少,抗炎细胞因子(白细胞介素-13)增加,基质金属蛋白酶13(MMP13)蛋白水平降低,同时MMP13信使核糖核酸表达减少,以及软骨生成的负性微小RNA调节因子(微小核糖核酸-145-5p和微小核糖核酸-21-5p)。在三维模型中,经MSC-EV处理的OACs表现出增强的促进软骨生成的特征(硫酸糖胺聚糖、聚集蛋白聚糖和蛋白聚糖升高)。MSC-EV处理还逆转了白细胞介素-1β对软骨生成基因表达和细胞外基质成分(ECM)产生的病理影响。最后,经MSC-EV处理的OACs显示出与软骨功能、胶原蛋白生物合成和ECM组织相关的基因表达增强,并表现出24种差异表达微小RNA的特征,这些微小RNA与软骨生成相关途径和ECM相互作用有关。总之,我们的数据为MSC-EVs作为早期OA治疗选择的潜在作用机制提供了新的见解,包括对经MSC-EV处理的OA的转录组分析,这可能为更有针对性的新型疗法铺平道路。