Cordoba Aldo, Cauich-Rodríguez Juan Valerio, Vargas-Coronado Rossana Faride, Velázquez-Castillo Rodrigo, Esquivel Karen
Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Queretaro 76010, Mexico.
Centro de Investigación Científica de Yucatán, Unidad de Materiales, C. 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Merida 97205, Mexico.
Polymers (Basel). 2024 Apr 17;16(8):1125. doi: 10.3390/polym16081125.
The addition of nanostructures to polymeric materials allows for a direct interaction between polymeric chains and nanometric structures, resulting in a synergistic process through the physical (electrostatic forces) and chemical properties (bond formation) of constituents for the modification of their properties and potential cutting-edge materials. This study explores a novel in situ synthesis method for PDMS-%SiO nanoparticle composites with varying crosslinking degrees (PDMS:TEOS of 15:1, 10:1, and 5:1); particle concentrations (5%, 10%, and 15%); and sol-gel catalysts (acidic and alkaline). This investigation delves into the distinct physical and chemical properties of silicon nanoparticles synthesized under acidic (SiO-a) and alkaline (SiO-b) conditions. A characterization through Raman, FT-IR, and XPS analyses confirms particle size and agglomeration differences between both the SiO-a and SiO-b particles. Similar chemical environments, with TEOS and ethanol by-products, were detected for both systems. The results on polymer composites elucidate the successful incorporation of SiO nanoparticles into the PDMS matrix without altering the PDMS's chemical structure. However, the presence of nanoparticles did affect the relative intensities of specific vibrational modes over composites from -35% to 24% (Raman) and from -14% to 59% (FT-IR). The XPS results validate the presence of Si, O, and C in all composites, with significant variations in atomic proportions (C/Si and O/Si) and Si and C component analyses through deconvolution techniques. This study demonstrates the successful in situ synthesis of PDMS-SiO composites with tunable properties by controlling the sol-gel and crosslinking synthesis parameters. The findings provide valuable insights into the in situ synthesis methods of polymeric composite materials and their potential integration with polymer nanocomposite processing techniques.
在聚合物材料中添加纳米结构可使聚合物链与纳米结构之间直接相互作用,通过成分的物理性质(静电力)和化学性质(键形成)产生协同作用,从而改变其性能并制备出潜在的前沿材料。本研究探索了一种新颖的原位合成方法,用于制备具有不同交联度(PDMS与TEOS的比例为15:1、10:1和5:1)、颗粒浓度(5%、10%和15%)以及溶胶 - 凝胶催化剂(酸性和碱性)的PDMS-%SiO纳米颗粒复合材料。该研究深入探讨了在酸性(SiO-a)和碱性(SiO-b)条件下合成的硅纳米颗粒的不同物理和化学性质。通过拉曼光谱、傅里叶变换红外光谱和X射线光电子能谱分析进行的表征证实了SiO-a和SiO-b颗粒之间的粒径和团聚差异。两个系统都检测到了类似的化学环境,伴有TEOS和乙醇副产物。聚合物复合材料的结果表明SiO纳米颗粒成功掺入PDMS基体中,且未改变PDMS的化学结构。然而,纳米颗粒的存在确实影响了复合材料中特定振动模式的相对强度,拉曼光谱中降低了-35%至24%,傅里叶变换红外光谱中降低了-14%至59%。X射线光电子能谱结果验证了所有复合材料中Si、O和C的存在,通过去卷积技术对原子比例(C/Si和O/Si)以及Si和C成分分析存在显著差异。本研究表明,通过控制溶胶 - 凝胶和交联合成参数,可以成功原位合成具有可调性能的PDMS-SiO复合材料。这些发现为聚合物复合材料的原位合成方法及其与聚合物纳米复合材料加工技术的潜在整合提供了有价值的见解。