Verma Sneha, Pathak Akhilesh Kumar, Rahman B M Azizur
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
Center for Smart Structures and Materials, Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.
Micromachines (Basel). 2024 Apr 6;15(4):502. doi: 10.3390/mi15040502.
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light-matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light-matter interaction mechanisms, capitalizing on the orders-of-magnitude enhancement of the electromagnetic field within plasmonic structures. This enhancement has been substantiated through theoretical, computational, and experimental studies. In this comprehensive review, we delve into the plasmon-enhanced processes on metallic and metamaterial-based sensors, considering factors such as geometrical influences, resonating wavelengths, chemical properties, and computational methods. Our exploration extends to practical applications, encompassing localized surface plasmon resonance ()-based planar waveguides, polymer-based biochip sensors, and -based fiber sensors. Ultimately, we aim to provide insights and guidelines for the development of next-generation, high-performance plasmonic technological devices.
表面等离子体激元,即局限于金属 - 电介质界面的连续且累积的电子振动,在纳米结构上聚集光场和能量方面起着关键作用。这种限制利用了其空间分布固有的亚波长特性,显著增强了光与物质的相互作用。金属、半导体和二维材料由于其独特的性质和结构,在从紫外(UV)到远红外的不同波长处表现出等离子体共振。表面等离子体激元为各种光与物质的相互作用机制提供了一个平台,利用了等离子体结构内电磁场增强几个数量级的优势。这种增强已通过理论、计算和实验研究得到证实。在这篇全面的综述中,我们深入探讨基于金属和超材料的传感器上等离子体增强过程,考虑几何影响、共振波长、化学性质和计算方法等因素。我们的探索扩展到实际应用,包括基于局域表面等离子体共振()的平面波导、基于聚合物的生物芯片传感器和基于的光纤传感器。最终,我们旨在为下一代高性能等离子体技术设备的开发提供见解和指导方针。