Suppr超能文献

金纳米结构及其应用的最新进展。

Recent progress of gold nanostructures and their applications.

作者信息

Dahan Khadiga Ali, Li Ying, Xu Juan, Kan Caixia

机构信息

College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

出版信息

Phys Chem Chem Phys. 2023 Jul 19;25(28):18545-18576. doi: 10.1039/d3cp01549a.

Abstract

For noble metals, such as gold (Au) and silver (Ag), it is well-known that surface plasmons of their nanocrystals have significant spatial confinement and propagation loss due to the strong damping effect and the scattering between the plasmons and phonons. Noble metal nanostructures are usually referred to as "plasmonic nanostructures" in many studies. Based on the resonance effect of surface plasmons, the electromagnetic field can be localized on the subwavelength scale, which induces a booming new field of nanophotonics. Among the various nanostructures, Au nanostructures have received extensive attention both in fundamental research and technological fields due to their unique localized surface plasmon characteristics. These characteristics include strong optical extinction, near-field enhancement, and far-field scattering. By changing either the morphological parameters or the surrounding medium of nanostructures, the localized surface plasmon resonance (SPR) of Au nanostructures can be tuned in a large spectral region from visible to near infrared (Vis-NIR) wavelength. Corresponding to the experimental research, there are several numerical techniques that enable modeling the optical characteristics of Au nanostructures in different shapes and assemblies. The most popular technique is the finite-difference time-domain (FDTD) method for modeling various nanostructures and nanoscale optical devices. The accuracy of the computational models has been proven by reliable experimental data. In this review, we focused on Au nanostructures of different morphologies, such as nanorods, nanocubes, nanobipyramids and nanostars. Then combined with FDTD simulations, we described the effect of morphological parameters and the surrounding medium on the SPR properties of Au nanostructures. More and more achievements indicate that the surface plasmon effect is promising in many technical fields. In the last part, we summarize some typical applications of plasmonic Au nanostructures, such as high sensitivity sensors, photothermal conversion with hot electron effects and photoelectric devices, as well as plasmonic nanolasers.

摘要

对于贵金属,如金(Au)和银(Ag),众所周知,由于强阻尼效应以及等离子体激元和声子之间的散射,其纳米晶体的表面等离子体激元具有显著的空间限制和传播损耗。在许多研究中,贵金属纳米结构通常被称为“等离子体纳米结构”。基于表面等离子体激元的共振效应,电磁场可以在亚波长尺度上局域化,这催生了蓬勃发展的纳米光子学新领域。在各种纳米结构中,金纳米结构因其独特的局域表面等离子体特性,在基础研究和技术领域都受到了广泛关注。这些特性包括强烈的光消光、近场增强和远场散射。通过改变纳米结构的形态参数或周围介质,可以在从可见光到近红外(Vis-NIR)波长的大光谱区域内调节金纳米结构的局域表面等离子体共振(SPR)。与实验研究相对应,有几种数值技术能够对不同形状和组装的金纳米结构的光学特性进行建模。最流行的技术是用于对各种纳米结构和纳米级光学器件进行建模的时域有限差分(FDTD)方法。计算模型的准确性已被可靠的实验数据所证实。在本综述中,我们重点关注了不同形态的金纳米结构,如纳米棒、纳米立方体、纳米双锥体和纳米星。然后结合FDTD模拟,我们描述了形态参数和周围介质对金纳米结构SPR特性的影响。越来越多的成果表明,表面等离子体激元效应在许多技术领域都很有前景。在最后一部分,我们总结了等离子体金纳米结构的一些典型应用,如高灵敏度传感器、具有热电子效应的光热转换和光电器件,以及等离子体纳米激光器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验