文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于高频电流检测的厚度剪切模式磁电传感器。

Magnetoelectric Sensor Operating in Thickness-Shear Mode for High-Frequency Current Detection.

作者信息

Li Fuchao, Wu Jingen, Liu Sujie, Gao Jieqiang, Lin Bomin, Mo Jintao, Qiao Jiacheng, Xu Yiwei, Du Yongjun, He Xin, Zhou Yifei, Zeng Lan, Hu Zhongqiang, Liu Ming

机构信息

State Grid Sichuan Electric Power Company, Chengdu 610041, China.

Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

Sensors (Basel). 2024 Apr 9;24(8):2396. doi: 10.3390/s24082396.


DOI:10.3390/s24082396
PMID:38676013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11054897/
Abstract

For the application of high-frequency current detection in power systems, such as very fast transient current, lightning current, partial discharge pulse current, etc., current sensors with a quick response are indispensable. Here, we propose a high-frequency magnetoelectric current sensor, which consists of a PZT piezoelectric ceramic and Metglas amorphous alloy. The proposed sensor is designed to work under thickness-shear mode, with the resonant frequency around 1.029 MHz. Furthermore, the proposed sensor is fabricated as a high-frequency magnetoelectric current sensor. A comparative experiment is carried out between the tunnel magnetoresistance sensor and the magnetoelectric sensor, in the aspect of high-frequency current detection up to 3 MHz. Our experimental results demonstrate that the thickness-shear mode magnetoelectric sensor has great potential for high-frequency current detection in smart grids.

摘要

对于高频电流检测在电力系统中的应用,如极快速瞬态电流、雷电流、局部放电脉冲电流等,具有快速响应的电流传感器是不可或缺的。在此,我们提出一种高频磁电电流传感器,它由PZT压电陶瓷和美特格拉斯非晶合金组成。所提出的传感器设计为在厚度剪切模式下工作,谐振频率约为1.029MHz。此外,所提出的传感器被制作为高频磁电电流传感器。在高达3MHz的高频电流检测方面,对隧道磁电阻传感器和磁电传感器进行了对比实验。我们的实验结果表明,厚度剪切模式磁电传感器在智能电网的高频电流检测中具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/b4d4fc81b822/sensors-24-02396-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/fc519c685ac5/sensors-24-02396-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/988c25b43c86/sensors-24-02396-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/ba8824137e2e/sensors-24-02396-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/656f88b9d9f1/sensors-24-02396-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/4d459eed2869/sensors-24-02396-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/a945a7de5633/sensors-24-02396-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/e07bfba805f1/sensors-24-02396-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/b4d4fc81b822/sensors-24-02396-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/fc519c685ac5/sensors-24-02396-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/988c25b43c86/sensors-24-02396-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/ba8824137e2e/sensors-24-02396-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/656f88b9d9f1/sensors-24-02396-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/4d459eed2869/sensors-24-02396-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/a945a7de5633/sensors-24-02396-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/e07bfba805f1/sensors-24-02396-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/11054897/b4d4fc81b822/sensors-24-02396-g008.jpg

相似文献

[1]
Magnetoelectric Sensor Operating in Thickness-Shear Mode for High-Frequency Current Detection.

Sensors (Basel). 2024-4-9

[2]
A Magnetoelectric Automotive Crankshaft Position Sensor.

Sensors (Basel). 2020-9-25

[3]
Magnetoelectric Vortex Magnetic Field Sensors Based on the Metglas/PZT Laminates.

Sensors (Basel). 2020-5-15

[4]
Modeling the Converse Magnetoelectric Effect in the Low-Frequency Range.

Sensors (Basel). 2023-12-27

[5]
Self-Biased Bidomain LiNbO/Ni/Metglas Magnetoelectric Current Sensor.

Sensors (Basel). 2020-12-13

[6]
High Magnetic Field Sensitivity in Ferromagnetic-Ferroelectric Composite with High Mechanical Quality Factor.

Sensors (Basel). 2020-11-19

[7]
A Shear-Mode Magnetoelectric Heterostructure with Enhanced Magnetoelectric Response for Stray Power-Frequency Magnetic Field Energy Harvesting.

Micromachines (Basel). 2022-11-1

[8]
A Comparative Study of Three Types Shear Mode Piezoelectric Wafers in Shear Horizontal Wave Generation and Reception.

Sensors (Basel). 2018-8-15

[9]
Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection.

Sci Rep. 2013

[10]
Intense Pulsed Light Thermal Treatment of Pb(Zr,Ti)O /Metglas Heterostructured Films Resulting in Extreme Magnetoelectric Coupling of over 20 V cm  Oe.

Adv Mater. 2023-8

本文引用的文献

[1]
A Wide-Band Magnetoelectric Sensor Based on a Negative-Feedback Compensated Readout Circuit.

Sensors (Basel). 2024-1-10

[2]
Contactless AC/DC Wide-Bandwidth Current Sensor Based on Composite Measurement Principle.

Sensors (Basel). 2022-10-19

[3]
Magnetoelectric Vortex Magnetic Field Sensors Based on the Metglas/PZT Laminates.

Sensors (Basel). 2020-5-15

[4]
A review on MnZn ferrites: Synthesis, characterization and applications.

Ceram Int. 2020-7

[5]
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.

Sensors (Basel). 2018-2-14

[6]
Magnetoelectric Current Sensors.

Sensors (Basel). 2017-6-2

[7]
Enhanced Resonance Magnetoelectric Coupling in (1-1) Connectivity Composites.

Adv Mater. 2017-3-3

[8]
Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots.

Opt Express. 2009-3-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索