School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Small. 2024 Sep;20(36):e2400261. doi: 10.1002/smll.202400261. Epub 2024 Apr 26.
Modern cryptography based on computational complexity theory is mainly constructed with silicon-based circuits. As DNA nanotechnology penetrates the molecular domain, utilizing molecular cryptography for data access protection in the biomolecular domain becomes a unique approach to information security. However, building security devices and strategies with robust security and compatibility is still challenging. Here, this study reports a time-controlled molecular authentication strategy using DNAzyme and DNA strand displacement as the basic framework. A time limit exists for authorization and access, and this spontaneous shutdown design further protects secure access. Multiple hierarchical authentications, temporal Boolean logic authentication, and enzyme authentication strategies are constructed based on DNA networks'good compatibility and programmability. This study gives proof of concept for the detection and protection of bioinformation about single nucleotide variants and miRNA, highlighting their potential in biosensing and security protection.
基于计算复杂性理论的现代密码学主要是由硅基电路构建的。随着 DNA 纳米技术渗透到分子领域,利用分子密码学对生物分子领域的数据访问进行保护成为信息安全的一种独特方法。然而,构建具有强大安全性和兼容性的安全设备和策略仍然具有挑战性。在这里,本研究报告了一种使用 DNA 酶和 DNA 链置换作为基本框架的时间控制分子认证策略。授权和访问都有时间限制,这种自发关闭设计进一步保护了安全访问。基于 DNA 网络的良好兼容性和可编程性,构建了多个层次的身份验证、时间布尔逻辑身份验证和酶身份验证策略。本研究为单核苷酸变异和 miRNA 的生物信息检测和保护提供了概念验证,突出了它们在生物传感和安全保护方面的潜力。