Zaman Asim, Hassan Haseeb, Zeng Xueqiang, Khan Rashid, Lu Jiaxi, Yang Huihui, Miao Xiaoqiang, Cao Anbo, Yang Yingjian, Huang Bingding, Guo Yingwei, Kang Yan
School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.
Front Neurosci. 2024 Apr 12;18:1363930. doi: 10.3389/fnins.2024.1363930. eCollection 2024.
In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic.
We introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability.
AFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision.
The proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.
在神经诊断中,准确检测和分割脑损伤至关重要。由于脑损伤形态复杂,识别这些损伤具有挑战性,尤其是在使用传统方法时。传统方法要么计算要求高但影响/增强效果有限,要么为了计算效率而牺牲细节。因此,在计算密集型医学成像中平衡性能和精度仍然是一个热门研究课题。
我们引入了一种新颖的编码器-解码器网络架构,称为自适应特征医学分割网络(AFMS-Net),它有两种编码器变体:单自适应编码器块(SAEB)和双自适应编码器块(DAEB)。SAEB采用挤压-激发机制来识别重要数据,同时忽略周边细节。这种方法最适合需要快速高效分割的场景,重点是识别关键损伤区域。相比之下,DAEB利用先进的通道空间注意力策略进行细粒度描绘和多类别分类。此外,两种架构都在编码器和解码器之间合并了一个分割路径(SegPath)模块,以细化分割、增强特征提取并提高模型性能和稳定性。
AFMS-Net在几个著名的数据集上表现出色,包括BRATs 2021、ATLAS 2021和ISLES 2022。其设计旨在构建一个能够高精度处理复杂分割挑战的轻量级架构。
所提出的AFMS-Net解决了脑损伤分割中性能和计算效率之间的关键平衡问题。通过引入两种定制的编码器变体,该网络适应了不同的速度和特征要求。这种方法不仅推动了损伤分割领域的技术发展,还为未来医学图像处理研究提供了一个可扩展的框架。