Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Nat Commun. 2020 Aug 27;11(1):4304. doi: 10.1038/s41467-020-18001-x.
Ribosome-mediated polymerization of backbone-extended monomers into polypeptides is challenging due to their poor compatibility with the translation apparatus, which evolved to use α-L-amino acids. Moreover, mechanisms to acylate (or charge) these monomers to transfer RNAs (tRNAs) to make aminoacyl-tRNA substrates is a bottleneck. Here, we rationally design non-canonical amino acid analogs with extended carbon chains (γ-, δ-, ε-, and ζ-) or cyclic structures (cyclobutane, cyclopentane, and cyclohexane) to improve tRNA charging. We then demonstrate site-specific incorporation of these non-canonical, backbone-extended monomers at the N- and C- terminus of peptides using wild-type and engineered ribosomes. This work expands the scope of ribosome-mediated polymerization, setting the stage for new medicines and materials.
核糖体介导的将骨架延伸单体聚合成长肽具有挑战性,因为它们与翻译装置的兼容性很差,而翻译装置是进化来使用α-L-氨基酸的。此外,将这些单体酰化(或电荷)以将转移 RNA(tRNA)转移到形成氨酰-tRNA 底物的机制是一个瓶颈。在这里,我们合理设计了具有扩展碳链(γ-、δ-、ε-和 ζ-)或环状结构(环丁烷、环戊烷和环己烷)的非天然氨基酸类似物,以提高 tRNA 的充电效率。然后,我们使用野生型和工程核糖体证明了这些非天然的、骨架延伸的单体在肽的 N-和 C-末端的定点掺入。这项工作扩展了核糖体介导聚合的范围,为新型药物和材料奠定了基础。