Suppr超能文献

多中心非小细胞肺癌放射组学研究的新型协调方法。

Novel Harmonization Method for Multi-Centric Radiomic Studies in Non-Small Cell Lung Cancer.

机构信息

S.C. Fisica Medica, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy.

S.C. Radioterapia, Azienda Ospedaliero-Universitaria Maggiore, 43126 Parma, Italy.

出版信息

Curr Oncol. 2022 Jul 22;29(8):5179-5194. doi: 10.3390/curroncol29080410.

Abstract

The purpose of this multi-centric work was to investigate the relationship between radiomic features extracted from pre-treatment computed tomography (CT), positron emission tomography (PET) imaging, and clinical outcomes for stereotactic body radiation therapy (SBRT) in early-stage non-small cell lung cancer (NSCLC). One-hundred and seventeen patients who received SBRT for early-stage NSCLC were retrospectively identified from seven Italian centers. The tumor was identified on pre-treatment free-breathing CT and PET images, from which we extracted 3004 quantitative radiomic features. The primary outcome was 24-month progression-free-survival (PFS) based on cancer recurrence (local/non-local) following SBRT. A harmonization technique was proposed for CT features considering lesion and contralateral healthy lung tissues using the LASSO algorithm as a feature selector. Models with harmonized CT features (B models) demonstrated better performances compared to the ones using only original CT features (C models). A linear support vector machine (SVM) with harmonized CT and PET features (A1 model) showed an area under the curve (AUC) of 0.77 (0.63-0.85) for predicting the primary outcome in an external validation cohort. The addition of clinical features did not enhance the model performance. This study provided the basis for validating our novel CT data harmonization strategy, involving delta radiomics. The harmonized radiomic models demonstrated the capability to properly predict patient prognosis.

摘要

本多中心研究旨在探讨立体定向体部放疗 (SBRT) 治疗早期非小细胞肺癌 (NSCLC) 患者时,从治疗前计算机断层扫描 (CT)、正电子发射断层扫描 (PET) 成像中提取的放射组学特征与临床结局之间的关系。我们从 7 个意大利中心回顾性地确定了 117 例接受 SBRT 治疗的早期 NSCLC 患者。在治疗前的自由呼吸 CT 和 PET 图像上识别肿瘤,并从中提取了 3004 个定量放射组学特征。主要结局是根据 SBRT 后癌症复发(局部/非局部)评估的 24 个月无进展生存 (PFS)。提出了一种 CT 特征的协调技术,考虑了病变和对侧健康肺组织,使用 LASSO 算法作为特征选择器。与仅使用原始 CT 特征的模型 (C 模型) 相比,使用协调 CT 特征的模型 (B 模型) 表现更好。使用协调的 CT 和 PET 特征的线性支持向量机 (SVM) (A1 模型) 在外部验证队列中预测主要结局的曲线下面积 (AUC) 为 0.77 (0.63-0.85)。添加临床特征并未提高模型性能。这项研究为验证我们的新型 CT 数据协调策略提供了基础,该策略涉及 delta 放射组学。协调的放射组学模型具有适当预测患者预后的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e82/9332210/62d155ef50bd/curroncol-29-00410-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验