Suppr超能文献

基于长短期记忆神经网络的结构监测数据修复

Structural monitoring data repair based on a long short-term memory neural network.

作者信息

Panfeng Ba, Songlin Zhu, Hongyu Chai, Caiwei Liu, Pengtao Wu, Lichang Qi

机构信息

School of Civil Engineering, Tianjin City Construction University, Tianjin, 300384, China.

School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, China.

出版信息

Sci Rep. 2024 Apr 30;14(1):9974. doi: 10.1038/s41598-024-60196-2.

Abstract

As construction technology and project management develop, structural monitoring systems become increasingly important for ensuring large-span spatial structure safety during construction and operation. However, most of the sensors and monitoring equipment in monitoring systems are poorly serviced, resulting in frequent abnormal monitoring data, which directly leads to challenges in data analysis and structural safety assessment. In this paper, a structural response recovery method based on a long short-term memory (LSTM) neural network is proposed by studying the autocorrelation of data and the spatial correlations among data at multiple measurement points. The effectiveness and robustness of the proposed method are verified using the monitored stress data for a grid structure jacking construction process, and the influence of different data loss rates on the recovery accuracy is analysed. The recovery models are compared using a support vector machine and a Multi-Layer Perception (MLP) neural network. The proposed method can effectively restore missing data; notably, the MSE index is 0.6, and the MAPE is below 15%. The data restoration method based on the LSTM neural network is more accurate than the traditional method. Finally, the repair applicability of various types of monitored data is verified using the monitoring data from Hall F of Qingdao Jiao-dong International Airport under typhoon conditions.

摘要

随着施工技术和项目管理的发展,结构监测系统对于确保大跨度空间结构在施工和运营期间的安全变得越来越重要。然而,监测系统中的大多数传感器和监测设备维护不善,导致监测数据频繁出现异常,这直接给数据分析和结构安全评估带来了挑战。本文通过研究数据的自相关性以及多个测量点数据之间的空间相关性,提出了一种基于长短期记忆(LSTM)神经网络的结构响应恢复方法。利用网格结构顶升施工过程中的监测应力数据验证了所提方法的有效性和鲁棒性,并分析了不同数据丢失率对恢复精度的影响。使用支持向量机和多层感知(MLP)神经网络对恢复模型进行了比较。所提方法能够有效恢复缺失数据;值得注意的是,均方误差(MSE)指标为0.6,平均绝对百分比误差(MAPE)低于15%。基于LSTM神经网络的数据恢复方法比传统方法更准确。最后,利用青岛胶东国际机场F厅在台风条件下的监测数据验证了各类监测数据的修复适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/100d/11579310/9f697d5993cc/41598_2024_60196_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验