Suppr超能文献

用于不规则和规则缺失数据重建的深度学习。

Deep learning for irregularly and regularly missing data reconstruction.

作者信息

Chai Xintao, Gu Hanming, Li Feng, Duan Hongyou, Hu Xiaobo, Lin Kai

机构信息

China University of Geosciences (Wuhan), Institute of Geophysics and Geomatics, DeepResearch Group, Center for Wave Propagation and Imaging, Wuhan, Hubei, China.

Sinopec Henan Oilfield Branch Company, Nanyang, Henan, China.

出版信息

Sci Rep. 2020 Feb 24;10(1):3302. doi: 10.1038/s41598-020-59801-x.

Abstract

Deep learning (DL) is a powerful tool for mining features from data, which can theoretically avoid assumptions (e.g., linear events) constraining conventional interpolation methods. Motivated by this and inspired by image-to-image translation, we applied DL to irregularly and regularly missing data reconstruction with the aim of transforming incomplete data into corresponding complete data. To accomplish this, we established a model architecture with randomly sampled data as input and corresponding complete data as output, which was based on an encoder-decoder-style U-Net convolutional neural network. We carefully prepared the training data using synthetic and field seismic data. We used a mean-squared-error loss function and an Adam optimizer to train the network. We displayed the feature maps for a randomly sampled data set going through the trained model with the aim of explaining how the missing data are reconstructed. We benchmarked the method on several typical datasets for irregularly missing data reconstruction, which achieved better performances compared with a peer-reviewed Fourier transform interpolation method, verifying the effectiveness, superiority, and generalization capability of our approach. Because regularly missing is a special case of irregularly missing, we successfully applied the model to regularly missing data reconstruction, although it was trained with irregularly sampled data only.

摘要

深度学习(DL)是一种从数据中挖掘特征的强大工具,理论上可以避免限制传统插值方法的假设(例如线性事件)。受此启发并受图像到图像转换的启发,我们将深度学习应用于不规则和规则缺失数据的重建,目的是将不完整数据转换为相应的完整数据。为了实现这一目标,我们建立了一个以随机采样数据为输入、相应完整数据为输出的模型架构,该架构基于编码器-解码器风格的U-Net卷积神经网络。我们使用合成地震数据和野外地震数据精心准备了训练数据。我们使用均方误差损失函数和Adam优化器来训练网络。我们展示了通过训练模型的随机采样数据集的特征图,目的是解释缺失数据是如何重建的。我们在几个用于不规则缺失数据重建的典型数据集上对该方法进行了基准测试,与一种经过同行评审的傅里叶变换插值方法相比,该方法取得了更好的性能,验证了我们方法的有效性、优越性和泛化能力。由于规则缺失是不规则缺失的一种特殊情况,我们成功地将该模型应用于规则缺失数据的重建,尽管它仅使用不规则采样数据进行训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c02/7040000/fb8b28bb31c3/41598_2020_59801_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验