Chen Xi, Kandel Mikhail E, Popescu Gabriel
Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Adv Opt Photonics. 2021 Jun 30;13(2):353-425. doi: 10.1364/AOP.417837. Epub 2021 May 5.
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
在本文中,我们回顾了空间光干涉显微镜(SLIM),它是一种基于相衬显微镜构建的共光路、相移干涉仪,采用白光照明。作为最灵敏的定量相位成像(QPI)方法之一,SLIM能够在亚纳米光程稳定性下实现无散斑的相位重建。我们首先回顾QPI中的图像形成、散射和全场方法。然后,我们概述了从理论、仪器到衍射层析成像的SLIM成像。讨论了泽尼克相衬显微镜、SLIM中的相位恢复以及光晕去除算法。接下来,我们讨论操作要求,重点介绍为SLIM专门开发的软件,该软件能够实现高通量采集、全玻片扫描、拼接图像配准以及使用彩色相机成像。我们介绍了两种使用SLIM解决逆问题的方法,白光层析成像和沃尔夫相位层析成像。最后,我们回顾了SLIM在基础科学和临床研究中的应用。SLIM可以研究细胞动力学、细胞生长与增殖、细胞迁移、物质运输等。在临床环境中,SLIM可以辅助癌症研究、生殖技术、血液检测等。最后,我们回顾了一个新兴趋势,即SLIM成像与人工智能相结合带来了计算特异性,进而为细胞生物学和病理学中悬而未决的挑战提供了新的解决方案。