Suppr超能文献

空间光干涉显微镜:原理及其在生物医学中的应用

Spatial light interference microscopy: principle and applications to biomedicine.

作者信息

Chen Xi, Kandel Mikhail E, Popescu Gabriel

机构信息

Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Adv Opt Photonics. 2021 Jun 30;13(2):353-425. doi: 10.1364/AOP.417837. Epub 2021 May 5.

Abstract

In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.

摘要

在本文中,我们回顾了空间光干涉显微镜(SLIM),它是一种基于相衬显微镜构建的共光路、相移干涉仪,采用白光照明。作为最灵敏的定量相位成像(QPI)方法之一,SLIM能够在亚纳米光程稳定性下实现无散斑的相位重建。我们首先回顾QPI中的图像形成、散射和全场方法。然后,我们概述了从理论、仪器到衍射层析成像的SLIM成像。讨论了泽尼克相衬显微镜、SLIM中的相位恢复以及光晕去除算法。接下来,我们讨论操作要求,重点介绍为SLIM专门开发的软件,该软件能够实现高通量采集、全玻片扫描、拼接图像配准以及使用彩色相机成像。我们介绍了两种使用SLIM解决逆问题的方法,白光层析成像和沃尔夫相位层析成像。最后,我们回顾了SLIM在基础科学和临床研究中的应用。SLIM可以研究细胞动力学、细胞生长与增殖、细胞迁移、物质运输等。在临床环境中,SLIM可以辅助癌症研究、生殖技术、血液检测等。最后,我们回顾了一个新兴趋势,即SLIM成像与人工智能相结合带来了计算特异性,进而为细胞生物学和病理学中悬而未决的挑战提供了新的解决方案。

相似文献

1
Spatial light interference microscopy: principle and applications to biomedicine.
Adv Opt Photonics. 2021 Jun 30;13(2):353-425. doi: 10.1364/AOP.417837. Epub 2021 May 5.
2
Spatial light interference microscopy (SLIM).
Opt Express. 2011 Jan 17;19(2):1016-26. doi: 10.1364/OE.19.001016.
3
Computational interference microscopy enabled by deep learning.
APL Photonics. 2021 Apr;6(4). doi: 10.1063/5.0041901. Epub 2021 Apr 6.
4
Instantaneous Spatial Light Interference Microscopy.
Opt Express. 2010 Jan 18;18(2):1569-75. doi: 10.1364/OE.18.001569.
5
Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM).
PLoS One. 2013;8(2):e56930. doi: 10.1371/journal.pone.0056930. Epub 2013 Feb 15.
6
7
Quantitative phase imaging of arthropods.
J Biomed Opt. 2015;20(11):111212. doi: 10.1117/1.JBO.20.11.111212.
9
Deconvolved spatial light interference microscopy for live cell imaging.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2489-97. doi: 10.1109/TBME.2011.2158003. Epub 2011 May 27.
10
Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation.
Biomed Opt Express. 2013 Aug 8;4(9):1571-83. doi: 10.1364/BOE.4.001571. eCollection 2013.

引用本文的文献

1
Impact of uniform illumination in widefield microscopy and mesoscopy.
Sci Rep. 2025 Jul 14;15(1):25400. doi: 10.1038/s41598-025-08754-0.
2
Quantitative phase imaging endoscopy with a metalens.
Light Sci Appl. 2024 Nov 8;13(1):305. doi: 10.1038/s41377-024-01587-y.
3
Quantitative Measurements of Red Blood Cell Indices Using Spectroscopic Differential Phase-Contrast Microscopy.
Chem Biomed Imaging. 2023 Nov 7;1(8):750-759. doi: 10.1021/cbmi.3c00090. eCollection 2023 Nov 27.
4
Quantitative phase microscopies: accuracy comparison.
Light Sci Appl. 2024 Oct 11;13(1):288. doi: 10.1038/s41377-024-01619-7.
5
Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part I.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22713. doi: 10.1117/1.JBO.29.S2.S22713. Epub 2024 Jul 18.
6
Vibrational imaging of metabolites for improved microbial cell strains.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22711. doi: 10.1117/1.JBO.29.S2.S22711. Epub 2024 Jul 1.
7
Quantitative phase imaging based on holography: trends and new perspectives.
Light Sci Appl. 2024 Jun 27;13(1):145. doi: 10.1038/s41377-024-01453-x.
8
Roadmap on Label-Free Super-Resolution Imaging.
Laser Photon Rev. 2023 Dec;17(12). doi: 10.1002/lpor.202200029. Epub 2023 Oct 30.
9
Multispectral Holographic Intensity and Phase Imaging of Semitransparent Ultrathin Films.
ACS Photonics. 2024 Apr 30;11(5):1873-1886. doi: 10.1021/acsphotonics.3c01834. eCollection 2024 May 15.
10
Grading of glioma tumors using digital holographic microscopy.
Heliyon. 2024 Apr 23;10(9):e29897. doi: 10.1016/j.heliyon.2024.e29897. eCollection 2024 May 15.

本文引用的文献

1
Live-dead assay on unlabeled cells using phase imaging with computational specificity.
Nat Commun. 2022 Feb 7;13(1):713. doi: 10.1038/s41467-022-28214-x.
2
4
Integrative quantitative-phase and airy light-sheet imaging.
Sci Rep. 2020 Nov 19;10(1):20150. doi: 10.1038/s41598-020-76730-x.
5
Quantifying myelin content in brain tissue using color Spatial Light Interference Microscopy (cSLIM).
PLoS One. 2020 Nov 19;15(11):e0241084. doi: 10.1371/journal.pone.0241084. eCollection 2020.
7
Wolf phase tomography (WPT) of transparent structures using partially coherent illumination.
Light Sci Appl. 2020 Aug 19;9:142. doi: 10.1038/s41377-020-00379-4. eCollection 2020.
9
Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18302-18309. doi: 10.1073/pnas.2001754117. Epub 2020 Jul 20.
10
Quantitative phase imaging of stromal prognostic markers in pancreatic ductal adenocarcinoma.
Biomed Opt Express. 2020 Feb 12;11(3):1354-1364. doi: 10.1364/BOE.383242. eCollection 2020 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验