文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测自噬相关基因并揭示肝缺血再灌注损伤中肝内皮细胞的异质性。

Predicting mitophagy-related genes and unveiling liver endothelial cell heterogeneity in hepatic ischemia-reperfusion injury.

机构信息

Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China.

Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.

出版信息

Front Immunol. 2024 Apr 17;15:1370647. doi: 10.3389/fimmu.2024.1370647. eCollection 2024.


DOI:10.3389/fimmu.2024.1370647
PMID:38694511
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11061384/
Abstract

BACKGROUND: Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. METHODS: To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. RESULTS: We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. CONCLUSIONS: Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.

摘要

背景:肝缺血再灌注损伤(HIRI)是肝移植和手术中的主要并发症,显著影响术后结果。线粒体自噬在 HIRI 中的作用对于去除功能失调的线粒体和维持细胞平衡至关重要,但目前尚不清楚。

方法:为了揭示与线粒体自噬相关的基因(MRGs)在 HIRI 中的作用,我们从基因表达综合数据库(GEO)中收集了 44 个 HIRI 样本和 44 个正常对照样本,进行了全面的数据集组装。使用随机森林和支持向量机-递归特征消除(SVM-RFE),我们确定了 8 个关键基因,并基于这些发现开发了一个逻辑回归模型。此外,我们根据这些基因的表达谱对 HIRI 患者进行了共识聚类分析,并进行了加权基因共表达网络分析(WGCNA),以识别不同模块内高相关性的基因簇。此外,我们进行了单细胞 RNA 测序数据分析,以探索 HIRI 中 MRGs 行为的见解。

结果:我们确定了 8 个关键基因(FUNDC1、VDAC1、MFN2、PINK1、CSNK2A2、ULK1、UBC、MAP1LC3B),它们在 HIRI 和对照组之间的表达不同,通过 PCR 验证得到了确认。我们基于这些基因的诊断模型准确预测了 HIRI 结果。分析表明,这些基因与单核细胞谱系呈强正相关,与 B 和 T 细胞呈负相关。根据 MRG 谱,HIRI 患者被分为 3 个亚群,WGCNA 揭示了高度相关的基因模块。单细胞分析确定了两种具有不同 MRG 评分的内皮细胞类型,表明它们在 HIRI 中具有不同的作用。

结论:我们的研究强调了 MRGs 在 HIRI 中的关键作用和内皮细胞的异质性。我们确定了巨噬细胞移动抑制因子(MIF)和 cGAS-STING(GAS)途径作为调节线粒体自噬对 HIRI 影响的调节剂。这些发现提高了我们对 HIRI 中线粒体自噬的理解,并为未来的研究和治疗发展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/ccf858480afc/fimmu-15-1370647-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/cb5525399239/fimmu-15-1370647-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/9189cc1804f2/fimmu-15-1370647-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/9ed27dda3145/fimmu-15-1370647-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/be78a279f450/fimmu-15-1370647-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/e88912d7bcc5/fimmu-15-1370647-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/be150551b297/fimmu-15-1370647-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/a4fe32e4540b/fimmu-15-1370647-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/b0efeaf466e4/fimmu-15-1370647-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/ccf858480afc/fimmu-15-1370647-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/cb5525399239/fimmu-15-1370647-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/9189cc1804f2/fimmu-15-1370647-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/9ed27dda3145/fimmu-15-1370647-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/be78a279f450/fimmu-15-1370647-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/e88912d7bcc5/fimmu-15-1370647-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/be150551b297/fimmu-15-1370647-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/a4fe32e4540b/fimmu-15-1370647-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/b0efeaf466e4/fimmu-15-1370647-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78f/11061384/ccf858480afc/fimmu-15-1370647-g009.jpg

相似文献

[1]
Predicting mitophagy-related genes and unveiling liver endothelial cell heterogeneity in hepatic ischemia-reperfusion injury.

Front Immunol. 2024

[2]
Comprehensive analysis of mitophagy-related genes in diagnosis and heterogeneous endothelial cells in chronic rhinosinusitis: based on bulk and single-cell RNA sequencing data.

Front Genet. 2023-9-8

[3]
Exosome-related gene identification and diagnostic model construction in hepatic ischemia-reperfusion injury.

Sci Rep. 2024-9-28

[4]
Identification and validation of potential diagnostic signature and immune cell infiltration for HIRI based on cuproptosis-related genes through bioinformatics analysis and machine learning.

Front Immunol. 2024

[5]
Comprehensive analysis of cuproptosis-related genes involved in immune infiltration and their use in the diagnosis of hepatic ischemia-reperfusion injury: an experimental study.

Int J Surg. 2025-1-1

[6]
Bulk and single-cell RNA sequencing analysis with 101 machine learning combinations reveal neutrophil extracellular trap involvement in hepatic ischemia-reperfusion injury and early allograft dysfunction.

Int Immunopharmacol. 2024-4-20

[7]
Identification of novel mitophagy-related biomarkers for Kawasaki disease by integrated bioinformatics and machine-learning algorithms.

Transl Pediatr. 2024-8-31

[8]
Analysis and experimental validation of IL-17 pathway and key genes as central roles associated with inflammation in hepatic ischemia-reperfusion injury.

Sci Rep. 2024-3-18

[9]
Identification of mitophagy-related biomarkers and immune infiltration in major depressive disorder.

BMC Genomics. 2023-4-25

[10]
Endothelial Notch activation promotes neutrophil transmigration via downregulating endomucin to aggravate hepatic ischemia/reperfusion injury.

Sci China Life Sci. 2020-2-9

引用本文的文献

[1]
Casein Kinase 2α Ablation Confers Protection Against Metabolic Dysfunction-Associated Steatotic Liver Disease: Role of FUN14 Domain Containing 1-Dependent Regulation of Mitophagy and Ferroptosis.

MedComm (2020). 2025-7-11

[2]
Discovery of Endothelial-Monocyte Crosstalk in Ischemic-Reperfusion Injury Following Liver Transplantation Based on Integration of Single-Cell RNA and Transcriptome RNA Sequencing.

J Cell Mol Med. 2025-2

[3]
Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 (MOP3) attenuates inflammation and improves survival in hepatic ischemia/reperfusion injury.

Surgery. 2025-2

本文引用的文献

[1]
Network pharmacology and molecular docking elucidate potential mechanisms of Eucommia ulmoides in hepatic ischemia-reperfusion injury.

Sci Rep. 2023-11-24

[2]
Eriodictyol Alleviated LPS/D-GalN-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Cell Apoptosis via PI3K/AKT Signaling Pathway.

Nutrients. 2023-10-12

[3]
Reprogramming of Treg cells in the inflammatory microenvironment during immunotherapy: a literature review.

Front Immunol. 2023

[4]
The emerging significance of mitochondrial targeted strategies in NAFLD treatment.

Life Sci. 2023-9-15

[5]
Burkill alleviates LPS/D-GalN-induced acute liver failure by modulating apoptosis and oxidative stress signaling pathways.

Aging (Albany NY). 2023-6-27

[6]
Autophagy, a double-edged sword for oral tissue regeneration.

J Adv Res. 2024-5

[7]
Role of Mitophagy in Regulating Intestinal Oxidative Damage.

Antioxidants (Basel). 2023-2-14

[8]
Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation.

Theranostics. 2023

[9]
Inhibition of macrophage migration inhibitory factor (MIF) suppresses apoptosis signal-regulating kinase 1 to protect against liver ischemia/reperfusion injury.

Front Pharmacol. 2022-9-8

[10]
Calcium Homeostasis in the Control of Mitophagy.

Antioxid Redox Signal. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索