IEEE Trans Biomed Eng. 2024 Oct;71(10):2842-2853. doi: 10.1109/TBME.2024.3396223. Epub 2024 Sep 19.
We present a model-based image reconstruction approach based on unrolled neural networks which corrects for image distortion and noise in low-field ( B ∼ 50 mT) MRI.
Utilising knowledge about the underlying physics, a novel network architecture (SH-Net) is introduced which involves the estimation of spherical harmonic coefficients to guarantee a spatially smooth field map estimate. The SH-Net is integrated in an end-to-end trainable model which jointly estimates the B-field map as well as the image. Experiments were conducted on retrospectively simulated low-field data of human knees.
We compare our model to different model-based approaches at distinct noise levels and various B-field distributions. Our results show that our physics-informed neural network approach outperforms the purely model-based methods by improving the PSNR up to 11.7% and the RMSE up to 86.3%.
Our end-to-end trained model-based approach outperforms existing methods in reconstructing image and B-field maps in the low-field regime.
low-field MRI is becoming increasingly more popular as it enables access to MR in challenging situations such as intensive care units or resource poor areas. Our method allows for fast and accurate image reconstruction in such low-field imaging with B-inhomogeneity compensation under a wide range of various environmental conditions.
我们提出了一种基于展开神经网络的模型重建方法,该方法可纠正低场(B∼50mT)MRI 中的图像失真和噪声。
利用对基础物理学的了解,引入了一种新的网络架构(SH-Net),它涉及到对球谐系数的估计,以保证磁场图估计的空间平滑。SH-Net 集成在一个端到端可训练的模型中,该模型可以共同估计 B 场图和图像。实验是在回顾性模拟的人类膝盖低场数据上进行的。
我们在不同的噪声水平和不同的 B 场分布下,将我们的模型与不同的基于模型的方法进行了比较。我们的结果表明,我们的物理信息神经网络方法通过提高 PSNR 高达 11.7%和 RMSE 高达 86.3%,优于纯粹的基于模型的方法。
我们的端到端训练的基于模型的方法在重建低场环境下的图像和 B 场图方面优于现有的方法。
低场 MRI 越来越受欢迎,因为它可以在重症监护室或资源匮乏地区等具有挑战性的情况下进行磁共振成像。我们的方法允许在各种环境条件下,对具有 B 不均匀性补偿的低场成像进行快速准确的图像重建。