Suppr超能文献

通过对话式人工智能实现健康公平:医疗保健领域包容性聊天机器人的设计与实施路线图。

Achieving health equity through conversational AI: A roadmap for design and implementation of inclusive chatbots in healthcare.

作者信息

Nadarzynski Tom, Knights Nicky, Husbands Deborah, Graham Cynthia A, Llewellyn Carrie D, Buchanan Tom, Montgomery Ian, Ridge Damien

机构信息

School of Social Sciences, University of Westminster, London, United Kingdom.

Kinsey Institute and Department of Gender Studies, Indiana University, Bloomington, United States of America.

出版信息

PLOS Digit Health. 2024 May 2;3(5):e0000492. doi: 10.1371/journal.pdig.0000492. eCollection 2024 May.

Abstract

BACKGROUND

The rapid evolution of conversational and generative artificial intelligence (AI) has led to the increased deployment of AI tools in healthcare settings. While these conversational AI tools promise efficiency and expanded access to healthcare services, there are growing concerns ethically, practically and in terms of inclusivity. This study aimed to identify activities which reduce bias in conversational AI and make their designs and implementation more equitable.

METHODS

A qualitative research approach was employed to develop an analytical framework based on the content analysis of 17 guidelines about AI use in clinical settings. A stakeholder consultation was subsequently conducted with a total of 33 ethnically diverse community members, AI designers, industry experts and relevant health professionals to further develop a roadmap for equitable design and implementation of conversational AI in healthcare. Framework analysis was conducted on the interview data.

RESULTS

A 10-stage roadmap was developed to outline activities relevant to equitable conversational AI design and implementation phases: 1) Conception and planning, 2) Diversity and collaboration, 3) Preliminary research, 4) Co-production, 5) Safety measures, 6) Preliminary testing, 7) Healthcare integration, 8) Service evaluation and auditing, 9) Maintenance, and 10) Termination.

DISCUSSION

We have made specific recommendations to increase conversational AI's equity as part of healthcare services. These emphasise the importance of a collaborative approach and the involvement of patient groups in navigating the rapid evolution of conversational AI technologies. Further research must assess the impact of recommended activities on chatbots' fairness and their ability to reduce health inequalities.

摘要

背景

对话式和生成式人工智能(AI)的快速发展导致AI工具在医疗环境中的应用日益增多。虽然这些对话式AI工具有望提高效率并扩大医疗服务的可及性,但在伦理、实际操作和包容性方面的担忧也与日俱增。本研究旨在确定能够减少对话式AI中的偏差并使其设计和实施更加公平的活动。

方法

采用定性研究方法,基于对17份关于临床环境中AI使用的指南的内容分析,开发一个分析框架。随后与总共33名不同种族的社区成员、AI设计师、行业专家和相关健康专业人员进行了利益相关者咨询,以进一步制定在医疗保健中公平设计和实施对话式AI的路线图。对访谈数据进行了框架分析。

结果

制定了一个10阶段的路线图,概述与公平对话式AI设计和实施阶段相关的活动:1)概念化和规划,2)多样性与协作,3)初步研究,4)共同生产,5)安全措施,6)初步测试,7)医疗整合,8)服务评估与审计,9)维护,10)终止。

讨论

作为医疗服务的一部分,我们提出了具体建议以提高对话式AI的公平性。这些建议强调了采用协作方法以及患者群体参与应对对话式AI技术快速发展的重要性。进一步的研究必须评估所推荐活动对聊天机器人公平性及其减少健康不平等能力的影响。

相似文献

引用本文的文献

本文引用的文献

5
A framework for digital health equity.数字健康公平框架。
NPJ Digit Med. 2022 Aug 18;5(1):119. doi: 10.1038/s41746-022-00663-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验