Nour Shaimaa A, Emam Maha T H, El-Sayed Ghada M, Sakr Ebtehag A E
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Giza, 12622, Dokki, Egypt.
Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Giza, Dokki, Egypt.
Microb Cell Fact. 2024 May 2;23(1):126. doi: 10.1186/s12934-024-02388-z.
Hydrocarbon pollution stemming from petrochemical activities is a significant global environmental concern. Bioremediation, employing microbial chitinase-based bioproducts to detoxify or remove contaminants, presents an intriguing solution for addressing hydrocarbon pollution. Chitooligosaccharides, a product of chitin degradation by chitinase enzymes, emerge as key components in this process. Utilizing chitinaceous wastes as a cost-effective substrate, microbial chitinase can be harnessed to produce Chitooligosaccharides. This investigation explores two strategies to enhance chitinase productivity, firstly, statistical optimization by the Plackett Burman design approach to evaluating the influence of individual physical and chemical parameters on chitinase production, Followed by response surface methodology (RSM) which delvs into the interactions among these factors to optimize chitinase production. Second, to further boost chitinase production, we employed heterologous expression of the chitinase-encoding gene in E. coli BL21(DE3) using a suitable vector. Enhancing chitinase activity not only boosts productivity but also augments the production of Chitooligosaccharides, which are found to be used as emulsifiers.
In this study, we focused on optimizing the production of chitinase A from S. marcescens using the Plackett Burman design and response surface methods. This approach led to achieving a maximum activity of 78.65 U/mL. Subsequently, we cloned and expressed the gene responsible for chitinase A in E. coli BL21(DE3). The gene sequence, named SmChiA, spans 1692 base pairs, encoding 563 amino acids with a molecular weight of approximately 58 kDa. This sequence has been deposited in the NCBI GenBank under the accession number "OR643436". The purified recombinant chitinase exhibited a remarkable activity of 228.085 U/mL, with optimal conditions at a pH of 5.5 and a temperature of 65 °C. This activity was 2.9 times higher than that of the optimized enzyme. We then employed the recombinant chitinase A to effectively hydrolyze shrimp waste, yielding chitooligosaccharides (COS) at a rate of 33% of the substrate. The structure of the COS was confirmed through NMR and mass spectrometry analyses. Moreover, the COS demonstrated its utility by forming stable emulsions with various hydrocarbons. Its emulsification index remained stable across a wide range of salinity, pH, and temperature conditions. We further observed that the COS facilitated the recovery of motor oil, burned motor oil, and aniline from polluted sand. Gravimetric assessment of residual hydrocarbons showed a correlation with FTIR analyses, indicating the efficacy of COS in remediation efforts.
The recombinant chitinase holds significant promise for the biological conversion of chitinaceous wastes into chitooligosaccharides (COS), which proved its potential in bioremediation efforts targeting hydrocarbon-contaminated sand.
石化活动产生的碳氢化合物污染是一个重大的全球环境问题。生物修复利用基于微生物几丁质酶的生物制品来解毒或去除污染物,为解决碳氢化合物污染提供了一个有趣的解决方案。壳寡糖是几丁质酶降解几丁质的产物,是这一过程中的关键成分。利用含几丁质的废物作为经济高效的底物,可以利用微生物几丁质酶生产壳寡糖。本研究探索了两种提高几丁质酶产量的策略,首先,通过Plackett Burman设计方法进行统计优化,以评估各个物理和化学参数对几丁质酶生产的影响,随后采用响应面方法(RSM)深入研究这些因素之间的相互作用,以优化几丁质酶的生产。其次,为了进一步提高几丁质酶的产量,我们使用合适的载体在大肠杆菌BL21(DE3)中对几丁质酶编码基因进行异源表达。提高几丁质酶活性不仅能提高产量,还能增加壳寡糖的产量,壳寡糖被用作乳化剂。
在本研究中,我们专注于使用Plackett Burman设计和响应面方法优化粘质沙雷氏菌几丁质酶A的生产。这种方法使几丁质酶的最大活性达到78.65 U/mL。随后,我们在大肠杆菌BL21(DE3)中克隆并表达了负责几丁质酶A的基因。该基因序列名为SmChiA,跨度为1692个碱基对,编码563个氨基酸,分子量约为58 kDa。该序列已保存在NCBI GenBank中,登录号为“OR643436”。纯化后的重组几丁质酶表现出显著的活性,为228.085 U/mL,最佳条件为pH 5.5和温度65°C。该活性比优化后的酶高2.9倍。然后,我们使用重组几丁质酶A有效地水解虾壳废料,以33%的底物转化率产生壳寡糖(COS)。通过核磁共振和质谱分析确定了COS的结构。此外,COS通过与各种碳氢化合物形成稳定乳液证明了其效用。其乳化指数在广泛的盐度、pH和温度条件下保持稳定。我们进一步观察到,COS有助于从污染的沙子中回收机油、燃烧后的机油和苯胺。对残留碳氢化合物的重量评估与傅里叶变换红外光谱分析相关,表明COS在修复工作中的有效性。
重组几丁质酶在将含几丁质的废物生物转化为壳寡糖(COS)方面具有巨大潜力,这证明了其在针对碳氢化合物污染沙子的生物修复工作中的潜力。