Suppr超能文献

利用人工智能可解释性技术,在预算有限的情况下开发一种胸部X光机器学习卷积神经网络模型,以分析机器学习推理模式。

Development of a chest X-ray machine learning convolutional neural network model on a budget and using artificial intelligence explainability techniques to analyze patterns of machine learning inference.

作者信息

Lee Stephen B

机构信息

Division of Infectious Diseases, Department of Medicine, College of Medicine, University of Saskatchewan, Regina, S4P 0W5, Canada.

出版信息

JAMIA Open. 2024 May 2;7(2):ooae035. doi: 10.1093/jamiaopen/ooae035. eCollection 2024 Jul.

Abstract

OBJECTIVE

Machine learning (ML) will have a large impact on medicine and accessibility is important. This study's model was used to explore various concepts including how varying features of a model impacted behavior.

MATERIALS AND METHODS

This study built an ML model that classified chest X-rays as normal or abnormal by using ResNet50 as a base with transfer learning. A contrast enhancement mechanism was implemented to improve performance. After training with a dataset of publicly available chest radiographs, performance metrics were determined with a test set. The ResNet50 base was substituted with deeper architectures (ResNet101/152) and visualization methods used to help determine patterns of inference.

RESULTS

Performance metrics were an accuracy of 79%, recall 69%, precision 96%, and area under the curve of 0.9023. Accuracy improved to 82% and recall to 74% with contrast enhancement. When visualization methods were applied and the ratio of pixels used for inference measured, deeper architectures resulted in the model using larger portions of the image for inference as compared to ResNet50.

DISCUSSION

The model performed on par with many existing models despite consumer-grade hardware and smaller datasets. Individual models vary thus a single model's explainability may not be generalizable. Therefore, this study varied architecture and studied patterns of inference. With deeper ResNet architectures, the machine used larger portions of the image to make decisions.

CONCLUSION

An example using a custom model showed that AI (Artificial Intelligence) can be accessible on consumer-grade hardware, and it also demonstrated an example of studying themes of ML explainability by varying ResNet architectures.

摘要

目的

机器学习(ML)将对医学产生重大影响,其可及性很重要。本研究的模型用于探索各种概念,包括模型的不同特征如何影响行为。

材料与方法

本研究构建了一个ML模型,该模型以ResNet50为基础并采用迁移学习,将胸部X光片分类为正常或异常。实施了一种对比度增强机制以提高性能。在使用公开可用的胸部X光片数据集进行训练后,用测试集确定性能指标。将ResNet50基础替换为更深的架构(ResNet101/152),并使用可视化方法来帮助确定推理模式。

结果

性能指标为准确率79%、召回率69%、精确率96%以及曲线下面积0.9023。通过对比度增强,准确率提高到82%,召回率提高到74%。当应用可视化方法并测量用于推理的像素比例时,与ResNet50相比,更深的架构使模型在推理时使用图像的更大比例部分。

讨论

尽管使用的是消费级硬件和较小的数据集,但该模型的表现与许多现有模型相当。各个模型有所不同,因此单个模型的可解释性可能无法推广。因此,本研究改变了架构并研究了推理模式。对于更深的ResNet架构,机器在决策时使用图像的更大比例部分。

结论

一个使用定制模型的例子表明,人工智能(AI)在消费级硬件上是可实现的,并且它还展示了一个通过改变ResNet架构来研究ML可解释性主题的例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0724/11064095/1a92252285a9/ooae035f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验