Suppr超能文献

学习最优的生物标志物指导的慢性疾病治疗策略。

Learning optimal biomarker-guided treatment policy for chronic disorders.

机构信息

Department of Biostatistics, Columbia University, New York, New York, USA.

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA.

出版信息

Stat Med. 2024 Jun 30;43(14):2765-2782. doi: 10.1002/sim.10099. Epub 2024 May 3.

Abstract

Electroencephalogram (EEG) provides noninvasive measures of brain activity and is found to be valuable for the diagnosis of some chronic disorders. Specifically, pre-treatment EEG signals in the alpha and theta frequency bands have demonstrated some association with antidepressant response, which is well-known to have a low response rate. We aim to design an integrated pipeline that improves the response rate of patients with major depressive disorder by developing a treatment policy guided by the resting state pre-treatment EEG recordings and other treatment effects modifiers. First, we design an innovative automatic site-specific EEG preprocessing pipeline to extract features with stronger signals than raw data. We then estimate the conditional average treatment effect (CATE) using causal forests and use a doubly robust technique to improve efficiency in the estimation of the average treatment effect. We present evidence of heterogeneity in the treatment effect and the modifying power of the EEG features, as well as a significant average treatment effect, a result that cannot be obtained with conventional methods. Finally, we employ an efficient policy learning algorithm to learn an optimal depth-2 treatment assignment decision tree and compare its performance with Q-Learning and outcome-weighted learning via simulation studies and an application to a large multi-site, double-blind, randomized controlled clinical trial, EMBARC.

摘要

脑电图(EEG)提供了对大脑活动的非侵入性测量,被证明对某些慢性疾病的诊断有价值。具体来说,在 alpha 和 theta 频带中的预处理 EEG 信号与抗抑郁反应有一定的关联,而抗抑郁反应的反应率众所周知较低。我们旨在设计一个综合的管道,通过基于静息状态预处理 EEG 记录和其他治疗效果调节剂的治疗政策来提高重度抑郁症患者的反应率。首先,我们设计了一种创新的自动特定部位 EEG 预处理管道,以提取比原始数据具有更强信号的特征。然后,我们使用因果森林估计条件平均治疗效果(CATE),并使用双重稳健技术提高平均治疗效果估计的效率。我们提出了治疗效果和 EEG 特征的调节能力的异质性的证据,以及显著的平均治疗效果,这是传统方法无法获得的结果。最后,我们采用高效的策略学习算法来学习最优的深度 2 治疗分配决策树,并通过模拟研究和对大型多站点、双盲、随机对照临床试验 EMBARC 的应用,将其性能与 Q-学习和结果加权学习进行比较。

相似文献

1
Learning optimal biomarker-guided treatment policy for chronic disorders.
Stat Med. 2024 Jun 30;43(14):2765-2782. doi: 10.1002/sim.10099. Epub 2024 May 3.
2
Antidepressants for the treatment of depression in people with cancer.
Cochrane Database Syst Rev. 2018 Apr 23;4(4):CD011006. doi: 10.1002/14651858.CD011006.pub3.
3
Vortioxetine for depression in adults.
Cochrane Database Syst Rev. 2017 Jul 5;7(7):CD011520. doi: 10.1002/14651858.CD011520.pub2.
4
Omega-3 fatty acids for depression in adults.
Cochrane Database Syst Rev. 2021 Nov 24;11(11):CD004692. doi: 10.1002/14651858.CD004692.pub5.
5
Atypical antipsychotics for disruptive behaviour disorders in children and youths.
Cochrane Database Syst Rev. 2012 Sep 12(9):CD008559. doi: 10.1002/14651858.CD008559.pub2.
6
New generation antidepressants for depression in children and adolescents: a network meta-analysis.
Cochrane Database Syst Rev. 2021 May 24;5(5):CD013674. doi: 10.1002/14651858.CD013674.pub2.
7
Antidepressants versus placebo for panic disorder in adults.
Cochrane Database Syst Rev. 2018 Apr 5;4(4):CD010676. doi: 10.1002/14651858.CD010676.pub2.
8
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
10
Atypical antipsychotics for disruptive behaviour disorders in children and youths.
Cochrane Database Syst Rev. 2017 Aug 9;8(8):CD008559. doi: 10.1002/14651858.CD008559.pub3.

本文引用的文献

1
An electroencephalographic signature predicts antidepressant response in major depression.
Nat Biotechnol. 2020 Apr;38(4):439-447. doi: 10.1038/s41587-019-0397-3. Epub 2020 Feb 10.
2
Augmented outcome-weighted learning for estimating optimal dynamic treatment regimens.
Stat Med. 2018 Nov 20;37(26):3776-3788. doi: 10.1002/sim.7844. Epub 2018 Jun 5.
3
Decision making and uncertainty quantification for individualized treatments using Bayesian Additive Regression Trees.
Stat Methods Med Res. 2019 Apr;28(4):1079-1093. doi: 10.1177/0962280217746191. Epub 2017 Dec 18.
4
Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design.
J Psychiatr Res. 2016 Jul;78:11-23. doi: 10.1016/j.jpsychires.2016.03.001. Epub 2016 Mar 15.
5
The PREP pipeline: standardized preprocessing for large-scale EEG analysis.
Front Neuroinform. 2015 Jun 18;9:16. doi: 10.3389/fninf.2015.00016. eCollection 2015.
6
A Simple Method for Estimating Interactions between a Treatment and a Large Number of Covariates.
J Am Stat Assoc. 2014 Oct;109(508):1517-1532. doi: 10.1080/01621459.2014.951443.
7
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
8
Q-learning: a data analysis method for constructing adaptive interventions.
Psychol Methods. 2012 Dec;17(4):478-94. doi: 10.1037/a0029373. Epub 2012 Oct 1.
9
Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression.
Clin Neurophysiol. 2009 Jul;120(7):1313-9. doi: 10.1016/j.clinph.2009.05.008. Epub 2009 Jun 17.
10
Background and rationale for the sequenced treatment alternatives to relieve depression (STAR*D) study.
Psychiatr Clin North Am. 2003 Jun;26(2):457-94, x. doi: 10.1016/s0193-953x(02)00107-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验