Suppr超能文献

用神经元启发式支撑脂双层来隐藏有机神经形态器件。

Concealing Organic Neuromorphic Devices with Neuronal-Inspired Supported Lipid Bilayers.

机构信息

Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy.

Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, Naples, 80125, Italy.

出版信息

Adv Sci (Weinh). 2024 Jul;11(27):e2305860. doi: 10.1002/advs.202305860. Epub 2024 May 3.

Abstract

Neurohybrid systems have gained large attention for their potential as in vitro and in vivo platform to interrogate and modulate the activity of cells and tissue within nervous system. In this scenario organic neuromorphic devices have been engineered as bioelectronic platforms to resemble characteristic neuronal functions. However, aiming to a functional communication with neuronal cells, material synthesis, and surface engineering can yet be exploited for optimizing bio-recognition processes at the neuromorphic-neuronal hybrid interface. In this work, artificial neuronal-inspired lipid bilayers have been assembled on an electrochemical neuromorphic organic device (ENODe) to resemble post-synaptic structural and functional features of living synapses. Here, synaptic conditioning has been achieved by introducing two neurotransmitter-mediated biochemical signals, to induce an irreversible change in the device conductance thus achieving Pavlovian associative learning. This new class of in vitro devices can be further exploited for assembling hybrid neuronal networks and potentially for in vivo integration within living neuronal tissues.

摘要

神经混合系统因其作为体外和体内平台来询问和调节神经系统内细胞和组织的活性的潜力而受到广泛关注。在这种情况下,有机神经形态设备已被设计为生物电子平台,以模拟特征性的神经元功能。然而,为了与神经元细胞进行功能通信,可以进一步利用材料合成和表面工程来优化神经形态-神经元混合界面处的生物识别过程。在这项工作中,人工神经元启发的脂质双层已被组装在电化学神经形态有机器件(ENODe)上,以模拟活突触的后突触结构和功能特征。在这里,通过引入两种神经递质介导的生化信号来实现突触调节,从而导致器件电导率的不可逆变化,从而实现巴甫洛夫式的联想学习。这种新型体外器件可进一步用于组装混合神经元网络,并有可能在活神经元组织内进行体内整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1f1/11251551/bf72efb36ece/ADVS-11-2305860-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验