Suppr超能文献

SLC22 OCT1 突变的全貌阐明了药物转运蛋白生物物理学与药物基因组学之间的桥梁。

The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics.

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.

Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 12121 Solna, Stockholm, Stockholm County 114 28, Sweden.

出版信息

Mol Cell. 2024 May 16;84(10):1932-1947.e10. doi: 10.1016/j.molcel.2024.04.008. Epub 2024 May 3.

Abstract

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.

摘要

转运蛋白的突变会影响个体对药物的反应,并导致许多疾病。目前仅对少数转运蛋白变体的功能影响进行了评估。在这里,我们结合饱和突变和多表型筛选,解析了影响关键肝脏外源性物质转运蛋白 OCT1 的 11213 个错义单氨基酸缺失和同义变体在 554 个残基上的作用。通过平行定量表达和底物摄取,我们发现大多数变体主要通过蛋白丰度发挥作用,而这种表型通常不与功能一起测量。利用我们的诱变结果,结合结构预测和分子动力学模拟,我们构建了整个转运周期的精确结构-功能模型,为所有已知和可能的人类 OCT1 多态性提供了生物物理特征。这项工作提供了 OCT1 变体的完整功能图谱,并为整合功能基因组学、生物物理建模和人类遗传学以预测变体对疾病和药物疗效的影响提供了框架。

相似文献

1
The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics.
Mol Cell. 2024 May 16;84(10):1932-1947.e10. doi: 10.1016/j.molcel.2024.04.008. Epub 2024 May 3.
2
The full spectrum of OCT1 (SLC22A1) mutations bridges transporter biophysics to drug pharmacogenomics.
bioRxiv. 2023 Jun 7:2023.06.06.543963. doi: 10.1101/2023.06.06.543963.
3
Substrate-specific effects point to the important role of Y361 as part of the YER motif in closing the binding pocket of OCT1.
J Biol Chem. 2025 Apr;301(4):108318. doi: 10.1016/j.jbc.2025.108318. Epub 2025 Feb 14.
4
5
Atypical Substrates of the Organic Cation Transporter 1.
Biomolecules. 2022 Nov 9;12(11):1664. doi: 10.3390/biom12111664.
8
OCT1 (SLC22A1) transporter kinetics and regulation in primary human hepatocyte 3D spheroids.
Sci Rep. 2024 Jul 27;14(1):17334. doi: 10.1038/s41598-024-67192-6.
9
Protein Kinase C-Independent Inhibition of Organic Cation Transporter 1 Activity by the Bisindolylmaleimide Ro 31-8220.
PLoS One. 2015 Dec 10;10(12):e0144667. doi: 10.1371/journal.pone.0144667. eCollection 2015.
10
Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine.
PLoS One. 2017 Dec 13;12(12):e0189521. doi: 10.1371/journal.pone.0189521. eCollection 2017.

引用本文的文献

1
Cosmos: A Position-Resolution Causal Model for Direct and Indirect Effects in Protein Functions.
bioRxiv. 2025 Aug 4:2025.08.01.667517. doi: 10.1101/2025.08.01.667517.
2
Variant scoring tools for deep mutational scanning.
Mol Syst Biol. 2025 Aug 8. doi: 10.1038/s44320-025-00137-x.
3
Surface delivery quantification reveals distinct trafficking efficiencies among clustered protocadherin isoforms.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2514178122. doi: 10.1073/pnas.2514178122. Epub 2025 Jul 30.
4
Multiplexed assays of variant effect for clinical variant interpretation.
Nat Rev Genet. 2025 Jul 21. doi: 10.1038/s41576-025-00870-x.
5
Accurate variant effect estimation in FACS-based deep mutational scanning data with Lilace.
bioRxiv. 2025 Jun 27:2025.06.24.661380. doi: 10.1101/2025.06.24.661380.
7
Computational design of conformation-biasing mutations to alter protein functions.
bioRxiv. 2025 Jun 2:2025.05.03.652001. doi: 10.1101/2025.05.03.652001.
8
Energetic and structural control of polyspecificity in a multidrug transporter.
bioRxiv. 2025 Apr 10:2025.04.09.647630. doi: 10.1101/2025.04.09.647630.

本文引用的文献

1
High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology.
Genome Med. 2024 May 30;16(1):73. doi: 10.1186/s13073-024-01340-5.
2
Structural basis of promiscuous substrate transport by Organic Cation Transporter 1.
Nat Commun. 2023 Oct 11;14(1):6374. doi: 10.1038/s41467-023-42086-9.
3
Accurate proteome-wide missense variant effect prediction with AlphaMissense.
Science. 2023 Sep 22;381(6664):eadg7492. doi: 10.1126/science.adg7492.
4
Genome-wide prediction of disease variant effects with a deep protein language model.
Nat Genet. 2023 Sep;55(9):1512-1522. doi: 10.1038/s41588-023-01465-0. Epub 2023 Aug 10.
6
Determinants of sugar-induced influx in the mammalian fructose transporter GLUT5.
Elife. 2023 Jul 5;12:e84808. doi: 10.7554/eLife.84808.
7
Molecular basis of polyspecific drug and xenobiotic recognition by OCT1 and OCT2.
Nat Struct Mol Biol. 2023 Jul;30(7):1001-1011. doi: 10.1038/s41594-023-01017-4. Epub 2023 Jun 8.
8
General trends in the effects of VX-661 and VX-445 on the plasma membrane expression of clinical CFTR variants.
Cell Chem Biol. 2023 Jun 15;30(6):632-642.e5. doi: 10.1016/j.chembiol.2023.05.001. Epub 2023 May 29.
10
Using evolutionary data to make sense of macromolecules with a "face-lifted" ConSurf.
Protein Sci. 2023 Mar;32(3):e4582. doi: 10.1002/pro.4582.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验