Suppr超能文献

深度电还原化学:在有机合成中利用碳基和硅基反应中间体

Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-based Reactive Intermediates in Organic Synthesis.

作者信息

Zhang Wen, Guan Weiyang, Martinez Alvarado Jesus I, Novaes Luiz F T, Lin Song

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

出版信息

ACS Catal. 2023 Jun 16;13(12):8038-8048. doi: 10.1021/acscatal.3c01174. Epub 2023 May 31.

Abstract

This Viewpoint outlines our recent contribution in electroreductive synthesis. Specifically, we leveraged deeply reducing potentials provided by electrochemistry to generate radical and anionic intermediates from readily available alkyl halides and chlorosilanes. Harnessing the distinct reactivities of radicals and anions, we have achieved several challenging transformations to construct C-C, C-Si, and Si-Si bonds. We highlight the mechanistic design principle that underpinned the development of each transformation and provide a view forward on future opportunities in growing area of reductive electrosynthesis.

摘要

本观点概述了我们近期在电还原合成方面的贡献。具体而言,我们利用电化学提供的深度还原电位,从易得的卤代烃和氯硅烷中生成自由基和阴离子中间体。利用自由基和阴离子独特的反应活性,我们实现了一些具有挑战性的转化反应,以构建碳 - 碳键、碳 - 硅键和硅 - 硅键。我们强调了支撑每个转化反应发展的机理设计原则,并对还原电合成这一不断发展的领域未来的机遇提出了展望。

相似文献

1
Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-based Reactive Intermediates in Organic Synthesis.
ACS Catal. 2023 Jun 16;13(12):8038-8048. doi: 10.1021/acscatal.3c01174. Epub 2023 May 31.
2
An Electroreductive Approach to Radical Silylation via the Activation of Strong Si-Cl Bond.
J Am Chem Soc. 2020 Dec 23;142(51):21272-21278. doi: 10.1021/jacs.0c10899. Epub 2020 Dec 8.
3
Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation.
Acc Chem Res. 2023 Nov 21;56(22):3292-3312. doi: 10.1021/acs.accounts.3c00531. Epub 2023 Nov 2.
4
Electroreductive Carbofunctionalization of Alkenes with Alkyl Bromides via a Radical-Polar Crossover Mechanism.
J Am Chem Soc. 2020 Dec 9;142(49):20661-20670. doi: 10.1021/jacs.0c08532. Epub 2020 Nov 24.
5
Electroreductive Cross-Electrophile Coupling (eXEC) Reactions.
Angew Chem Int Ed Engl. 2023 Nov 6;62(45):e202306679. doi: 10.1002/anie.202306679. Epub 2023 Jul 12.
6
Group 14 Elements Hetero-Difunctionalizations via Nickel-Catalyzed Electroreductive Cross-Coupling.
Angew Chem Int Ed Engl. 2023 Aug 14;62(33):e202306498. doi: 10.1002/anie.202306498. Epub 2023 Jul 6.
7
Nickel-Catalyzed Radical Mechanisms: Informing Cross-Coupling for Synthesizing Non-Canonical Biomolecules.
Acc Chem Res. 2023 Dec 19;56(24):3640-3653. doi: 10.1021/acs.accounts.3c00588. Epub 2023 Nov 30.
8
Paired Electrolysis Enables Reductive Heck Coupling of Unactivated (Hetero)Aryl Halides and Alkenes.
Angew Chem Int Ed Engl. 2024 Sep 16;63(38):e202408834. doi: 10.1002/anie.202408834. Epub 2024 Aug 13.
9
Reductive Cross-Coupling of Unreactive Electrophiles.
Acc Chem Res. 2022 Sep 6;55(17):2491-2509. doi: 10.1021/acs.accounts.2c00381. Epub 2022 Aug 11.
10
Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives.
Acc Chem Res. 2020 Sep 15;53(9):1833-1845. doi: 10.1021/acs.accounts.0c00291. Epub 2020 Aug 25.

引用本文的文献

1
Switchable electrochemical pathways for the selective C(sp)-Ge bond formation.
Nat Commun. 2025 Aug 6;16(1):7247. doi: 10.1038/s41467-025-62141-x.
2
Markovnikov-Selective Electrocatalytic Hydroalkylation Enabled by Metal-Ligand Cooperative Storage of H-Atom Equivalents.
ACS Catal. 2025 Jun 20;15(12):10694-10701. doi: 10.1021/acscatal.5c01943. Epub 2025 Jun 6.
3
Facile, general allylation of unactivated alkyl halides electrochemically enabled radical-polar crossover.
Chem Sci. 2025 Mar 12;16(15):6317-6324. doi: 10.1039/d4sc07923j. eCollection 2025 Apr 9.
4
The role of silicon in drug discovery: a review.
RSC Med Chem. 2024 Jul 1;15(10):3286-3344. doi: 10.1039/d4md00169a. eCollection 2024 Oct 17.
5
The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement.
Chem Sci. 2024 Jul 19;15(33):13459-13465. doi: 10.1039/d4sc02821j. eCollection 2024 Aug 22.
6
Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation.
Beilstein J Org Chem. 2024 Jun 10;20:1327-1333. doi: 10.3762/bjoc.20.116. eCollection 2024.
7
A guide to troubleshooting metal sacrificial anodes for organic electrosynthesis.
Chem Sci. 2024 Mar 6;15(16):5814-5831. doi: 10.1039/d3sc06885d. eCollection 2024 Apr 24.
8
Pulsed electrolysis: enhancing primary benzylic C(sp)-H nucleophilic fluorination.
Org Chem Front. 2023 Dec 13;11(3):802-808. doi: 10.1039/d3qo01865b. eCollection 2024 Jan 30.
9
Electroreductive Radical Addition-Polar Cyclization Cascade to Access Cycloalkanes.
Org Lett. 2024 Jan 12;26(1):116-121. doi: 10.1021/acs.orglett.3c03722. Epub 2023 Dec 29.
10
A tutorial on asymmetric electrocatalysis.
Chem Soc Rev. 2023 Nov 27;52(23):8106-8125. doi: 10.1039/d3cs00511a.

本文引用的文献

1
A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds.
J Nat Prod. 2024 Apr 26;87(4):1285-1305. doi: 10.1021/acs.jnatprod.3c00803. Epub 2024 Feb 20.
2
An Electrochemical Strategy to Synthesize Disilanes and Oligosilanes from Chlorosilanes.
Angew Chem Int Ed Engl. 2023 Jun 26;62(26):e202303592. doi: 10.1002/anie.202303592. Epub 2023 May 15.
3
Recent Advances in C(sp)-C(sp) and C(sp)-C(sp) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses.
ACS Org Inorg Au. 2021 Dec 22;2(2):126-147. doi: 10.1021/acsorginorgau.1c00037. eCollection 2022 Apr 6.
4
Deuterodehalogenation Under Net Reductive or Redox-Neutral Conditions Enabled by Paired Electrolysis.
Angew Chem Int Ed Engl. 2023 Apr 3;62(15):e202218858. doi: 10.1002/anie.202218858. Epub 2023 Mar 1.
5
Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes.
J Am Chem Soc. 2022 Oct 5;144(39):17783-17791. doi: 10.1021/jacs.2c08278. Epub 2022 Sep 22.
6
An asymmetric sp-sp cross-electrophile coupling using 'ene'-reductases.
Nature. 2022 Oct;610(7931):302-307. doi: 10.1038/s41586-022-05167-1. Epub 2022 Aug 11.
7
Electrocarboxylation of Aryl Epoxides with CO for the Facile and Selective Synthesis of β-Hydroxy Acids.
Angew Chem Int Ed Engl. 2022 Sep 19;61(38):e202207746. doi: 10.1002/anie.202207746. Epub 2022 Aug 17.
8
Nickel-Catalyzed Reductive Alkylation of Heteroaryl Imines.
Angew Chem Int Ed Engl. 2022 Sep 19;61(38):e202207597. doi: 10.1002/anie.202207597. Epub 2022 Aug 16.
9
Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling.
Science. 2022 Apr 22;376(6591):410-416. doi: 10.1126/science.abo0039. Epub 2022 Apr 21.
10
Nickel-Catalyzed C(sp)-C(sp) Cross-Electrophile Coupling of In Situ Generated NHP Esters with Unactivated Alkyl Bromides.
Org Lett. 2022 Apr 22;24(15):2853-2857. doi: 10.1021/acs.orglett.2c00805. Epub 2022 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验