Suppr超能文献

基于低功耗纳米级S-FED的单端读出放大器应用于积分发放神经元电路。

Low power nanoscale S-FED based single ended sense amplifier applied in integrate and fire neuron circuit.

作者信息

Motaman SeyedMohamadJavad, Ghafouri Tara, Manavizadeh Negin

机构信息

Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran.

出版信息

Sci Rep. 2024 May 9;14(1):10691. doi: 10.1038/s41598-024-61224-x.

Abstract

Current advancements in neuromorphic computing systems are focused on decreasing power consumption and enriching computational functions. Correspondingly, state-of-the-art system-on-chip developers are encouraged to design nanoscale devices with minimum power dissipation and high-speed operation. This paper deals with designing a sense amplifier based on side-contacted field-effect diodes to reduce the power-delay product (PDP) and the noise susceptibility, as critical factors in neuron circuits. Our findings reveal that both static and dynamic power consumption of the S-FED-based sense amplifier, equal to 1.86 μW and 1.92 fW/GHz, are × 243.03 and × 332.83 lower than those of the conventional CMOS counterpart, respectively. While the sense-amplifier circuit based on CMOS technology undergoes an output voltage deviation of 170.97 mV, the proposed S-FED-based one enjoys a minor output deviation of 27.31 mV. Meanwhile, the superior HIGH-level and LOW-level noise margins of the S-FED-based sense amplifier to the CMOS counterparts (∆NM = 70 mV and ∆NM = 120 mV), respectively, can ensure the system-level operation stability of the former one. Subsequent to the attainment of an area-efficient, low-power, and high-speed S-FED-based sense amplifier (PDP = 187.75 × 10 W s) as a fundamental building block, devising an innovative integrate-and-fire neuron circuit based on S-FED paves the way to realize a new generation of neuromorphic architectures. To shed light on this context, an S-FED-based integrate-and-fire neuron circuit is designed and analyzed utilizing a sense amplifier and feedback loop to enhance spiking voltage and subsequent noise immunity in addition to an about fourfold increase in firing frequency compared to CMOS-based ones.

摘要

神经形态计算系统当前的进展集中在降低功耗和丰富计算功能上。相应地,鼓励先进的片上系统开发者设计具有最小功耗和高速运行的纳米级器件。本文致力于设计一种基于侧接触场效应二极管的读出放大器,以降低作为神经元电路关键因素的功耗延迟积(PDP)和噪声敏感度。我们的研究结果表明,基于S-FED的读出放大器的静态和动态功耗分别为1.86 μW和1.92 fW/GHz,分别比传统CMOS对应器件低×243.03倍和×332.83倍。基于CMOS技术的读出放大器电路的输出电压偏差为170.97 mV,而所提出的基于S-FED的读出放大器的输出偏差较小,为27.31 mV。同时,基于S-FED的读出放大器相对于CMOS对应器件具有更高的高电平噪声容限和低电平噪声容限(∆NM = 70 mV和∆NM = 120 mV),这可以确保前者的系统级运行稳定性。在获得了一个面积高效、低功耗和高速的基于S-FED的读出放大器(PDP = 187.75 × 10 W s)作为基本构建模块之后,设计一种基于S-FED的创新型积分发放神经元电路为实现新一代神经形态架构铺平了道路。为了阐明这一背景,设计并分析了一种基于S-FED的积分发放神经元电路,该电路利用读出放大器和反馈回路来提高尖峰电压和后续的抗噪声能力,并且与基于CMOS的电路相比,其放电频率提高了约四倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6bd/11082184/7c69f7dac4d4/41598_2024_61224_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验