Suppr超能文献

机器学习方法在自杀预防中关键工具的开发:自杀危机量表-2(SCI-2)短式。

Machine learning approach for the development of a crucial tool in suicide prevention: The Suicide Crisis Inventory-2 (SCI-2) Short Form.

机构信息

Department of Psychiatry, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy.

Department of Biology, New York University, New York City, New York, United States of America.

出版信息

PLoS One. 2024 May 10;19(5):e0299048. doi: 10.1371/journal.pone.0299048. eCollection 2024.

Abstract

The Suicide Crisis Syndrome (SCS) describes a suicidal mental state marked by entrapment, affective disturbance, loss of cognitive control, hyperarousal, and social withdrawal that has predictive capacity for near-term suicidal behavior. The Suicide Crisis Inventory-2 (SCI-2), a reliable clinical tool that assesses SCS, lacks a short form for use in clinical settings which we sought to address with statistical analysis. To address this need, a community sample of 10,357 participants responded to an anonymous survey after which predictive performance for suicidal ideation (SI) and SI with preparatory behavior (SI-P) was measured using logistic regression, random forest, and gradient boosting algorithms. Four-fold cross-validation was used to split the dataset in 1,000 iterations. We compared rankings to the SCI-Short Form to inform the short form of the SCI-2. Logistic regression performed best in every analysis. The SI results were used to build the SCI-2-Short Form (SCI-2-SF) utilizing the two top ranking items from each SCS criterion. SHAP analysis of the SCI-2 resulted in meaningful rankings of its items. The SCI-2-SF, derived from these rankings, will be tested for predictive validity and utility in future studies.

摘要

自杀危机综合征(SCS)描述了一种以困境、情感障碍、认知控制丧失、过度兴奋和社会退缩为特征的自杀心理状态,对近期自杀行为具有预测能力。自杀危机量表-2(SCI-2)是一种可靠的临床工具,用于评估 SCS,但缺乏在临床环境中使用的简短形式,我们希望通过统计分析来解决这一问题。为了满足这一需求,我们对 10357 名参与者进行了一项匿名调查,然后使用逻辑回归、随机森林和梯度提升算法来衡量对自杀意念(SI)和有准备行为的自杀意念(SI-P)的预测性能。四折交叉验证将数据集分为 1000 次迭代。我们将排名与 SCI-Short Form 进行比较,以了解 SCI-2 的短表单。逻辑回归在每项分析中表现最佳。SI 结果用于构建 SCI-2-Short Form(SCI-2-SF),利用每个 SCS 标准的前两项最高排名项目。对 SCI-2 的 SHAP 分析得出了其项目的有意义排名。SCI-2-SF 将根据这些排名在未来的研究中进行预测有效性和实用性的测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af9/11086905/46711e616402/pone.0299048.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验