Suppr超能文献

机器学习实时心脏病预测。

Machine Learning for Real-Time Heart Disease Prediction.

出版信息

IEEE J Biomed Health Inform. 2021 Sep;25(9):3627-3637. doi: 10.1109/JBHI.2021.3066347. Epub 2021 Sep 3.

Abstract

Heart-related anomalies are among the most common causes of death worldwide. Patients are often asymptomatic until a fatal event happens, and even when they are under observation, trained personnel is needed in order to identify a heart anomaly. In the last decades, there has been increasing evidence of how Machine Learning can be leveraged to detect such anomalies, thanks to the availability of Electrocardiograms (ECG) in digital format. New developments in technology have allowed to exploit such data to build models able to analyze the patterns in the occurrence of heart beats, and spot anomalies from them. In this work, we propose a novel methodology to extract ECG-related features and predict the type of ECG recorded in real time (less than 30 milliseconds). Our models leverage a collection of almost 40 thousand ECGs labeled by expert cardiologists across different hospitals and countries, and are able to detect 7 types of signals: Normal, AF, Tachycardia, Bradycardia, Arrhythmia, Other or Noisy. We exploit the XGBoost algorithm, a leading machine learning method, to train models achieving out of sample F1 Scores in the range 0.93 - 0.99. To our knowledge, this is the first work reporting high performance across hospitals, countries and recording standards.

摘要

心脏相关异常是全球最常见的死亡原因之一。患者通常在致命事件发生前无症状,即使在观察期间,也需要经过培训的专业人员才能识别心脏异常。在过去几十年中,由于心电图(ECG)以数字格式提供,越来越多的证据表明机器学习可以用于检测此类异常。技术的新发展使得能够利用这些数据来构建能够分析心跳发生模式并从中发现异常的模型。在这项工作中,我们提出了一种新颖的方法来提取 ECG 相关特征,并实时预测(少于 30 毫秒)记录的 ECG 类型。我们的模型利用了由不同医院和国家的专家心脏病专家标记的近 4 万份 ECG 进行训练,能够检测 7 种信号:正常、AF、心动过速、心动过缓、心律失常、其他或嘈杂。我们利用 XGBoost 算法,一种领先的机器学习方法,训练出的模型在样本外 F1 得分在 0.93-0.99 之间。据我们所知,这是第一份报告在医院、国家和记录标准方面均取得高性能的工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验