Suppr超能文献

肿瘤微环境网络定义的亚型可预测食管鳞状细胞癌的免疫治疗反应。

Tumor niche network-defined subtypes predict immunotherapy response of esophageal squamous cell cancer.

作者信息

Ko Kyung-Pil, Zhang Shengzhe, Huang Yuanjian, Kim Bongjun, Zou Gengyi, Jun Sohee, Zhang Jie, Zhao Yahui, Martin Cecilia, Dunbar Karen J, Efe Gizem, Rustgi Anil K, Nakagawa Hiroshi, Zhang Haiyang, Liu Zhihua, Park Jae-Il

机构信息

Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.

出版信息

iScience. 2024 Apr 22;27(5):109795. doi: 10.1016/j.isci.2024.109795. eCollection 2024 May 17.

Abstract

Despite the promising outcomes of immune checkpoint inhibitors (ICIs), resistance to ICI presents a new challenge. Therefore, selecting patients for specific ICI applications is crucial for maximizing therapeutic efficacy. Herein, we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network and transcriptional signatures of T cells and myeloid cells define distinct ESCC subtypes characterized by T cell exhaustion, and interleukin (IL) and interferon (IFN) signaling. Furthermore, this approach classifies ESCC patients into ICI responders and non-responders, as validated by whole tumor transcriptomes and liquid biopsy-based single-cell transcriptomes of anti-PD-1 ICI responders and non-responders. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and potentially predicting ICI responses in ESCC patients.

摘要

尽管免疫检查点抑制剂(ICI)取得了令人鼓舞的成果,但对ICI的耐药性带来了新的挑战。因此,选择适合特定ICI应用的患者对于最大化治疗效果至关重要。在此,我们整理了69例人类食管鳞状细胞癌(ESCC)患者的肿瘤微环境(TME)单细胞转录组数据集,以对ESCC进行亚型分类。对T细胞和髓系细胞的细胞网络和转录特征进行综合分析,确定了以T细胞耗竭、白细胞介素(IL)和干扰素(IFN)信号为特征的不同ESCC亚型。此外,这种方法将ESCC患者分为ICI反应者和无反应者,这在抗PD-1 ICI反应者和无反应者的全肿瘤转录组和基于液体活检的单细胞转录组中得到了验证。我们的研究基于TME转录网络对ESCC患者进行分层,为肿瘤微环境重塑提供了新的见解,并有可能预测ESCC患者的ICI反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da42/11089351/0f7c6bba8272/fx1.jpg

相似文献

1
Tumor niche network-defined subtypes predict immunotherapy response of esophageal squamous cell cancer.
iScience. 2024 Apr 22;27(5):109795. doi: 10.1016/j.isci.2024.109795. eCollection 2024 May 17.
2
Tumor Niche Network-Defined Subtypes Predict Immunotherapy Response of Esophageal Squamous Cell Cancer.
bioRxiv. 2023 Feb 15:2023.02.15.528539. doi: 10.1101/2023.02.15.528539.
4
Immune evasion in esophageal squamous cell cancer: From the perspective of tumor microenvironment.
Front Oncol. 2023 Jan 9;12:1096717. doi: 10.3389/fonc.2022.1096717. eCollection 2022.
10
A more novel and robust gene signature predicts outcome in patients with esophageal squamous cell carcinoma.
Clin Res Hepatol Gastroenterol. 2022 Dec;46(10):102033. doi: 10.1016/j.clinre.2022.102033. Epub 2022 Oct 17.

本文引用的文献

1
Key Genetic Determinants Driving Esophageal Squamous Cell Carcinoma Initiation and Immune Evasion.
Gastroenterology. 2023 Sep;165(3):613-628.e20. doi: 10.1053/j.gastro.2023.05.030. Epub 2023 May 29.
4
Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma.
Cancer Cell. 2023 Jan 9;41(1):181-195.e9. doi: 10.1016/j.ccell.2022.12.004. Epub 2022 Dec 29.
6
The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer.
Cell Death Dis. 2022 Oct 16;13(10):874. doi: 10.1038/s41419-022-05320-8.
10
Toripalimab plus chemotherapy in treatment-naïve, advanced esophageal squamous cell carcinoma (JUPITER-06): A multi-center phase 3 trial.
Cancer Cell. 2022 Mar 14;40(3):277-288.e3. doi: 10.1016/j.ccell.2022.02.007. Epub 2022 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验