Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Division for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Nat Commun. 2023 Aug 15;14(1):4938. doi: 10.1038/s41467-023-40564-8.
Swift diagnosis and treatment play a decisive role in the clinical outcome of patients with acute ischemic stroke (AIS), and computer-aided diagnosis (CAD) systems can accelerate the underlying diagnostic processes. Here, we developed an artificial neural network (ANN) which allows automated detection of abnormal vessel findings without any a-priori restrictions and in <2 minutes. Pseudo-prospective external validation was performed in consecutive patients with suspected AIS from 4 different hospitals during a 6-month timeframe and demonstrated high sensitivity (≥87%) and negative predictive value (≥93%). Benchmarking against two CE- and FDA-approved software solutions showed significantly higher performance for our ANN with improvements of 25-45% for sensitivity and 4-11% for NPV (p ≤ 0.003 each). We provide an imaging platform ( https://stroke.neuroAI-HD.org ) for online processing of medical imaging data with the developed ANN, including provisions for data crowdsourcing, which will allow continuous refinements and serve as a blueprint to build robust and generalizable AI algorithms.
快速诊断和治疗对急性缺血性脑卒中(AIS)患者的临床结局起着决定性的作用,而计算机辅助诊断(CAD)系统可以加速潜在的诊断过程。在这里,我们开发了一种人工神经网络(ANN),它可以在没有任何先验限制的情况下,在<2 分钟内自动检测到异常血管发现。在 6 个月的时间内,对来自 4 家不同医院的疑似 AIS 连续患者进行了假前瞻性外部验证,结果显示其具有高灵敏度(≥87%)和阴性预测值(≥93%)。与两种经过 CE 和 FDA 批准的软件解决方案进行基准测试显示,我们的 ANN 性能明显更高,灵敏度提高了 25-45%,NPV 提高了 4-11%(p≤0.003 各)。我们提供了一个成像平台(https://stroke.neuroAI-HD.org),用于在线处理使用开发的 ANN 的医学成像数据,包括数据众包的规定,这将允许不断改进,并作为构建强大和可推广的 AI 算法的蓝图。