Suppr超能文献

单细胞 RNA 测序时间序列数据的多组学整合预测帕金森病的新干预点。

Multi-omics integration of scRNA-seq time series data predicts new intervention points for Parkinson's disease.

机构信息

Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain.

The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.

出版信息

Sci Rep. 2024 May 14;14(1):10983. doi: 10.1038/s41598-024-61844-3.

Abstract

Parkinson's disease (PD) is a complex neurodegenerative disorder without a cure. The onset of PD symptoms corresponds to 50% loss of midbrain dopaminergic (mDA) neurons, limiting early-stage understanding of PD. To shed light on early PD development, we study time series scRNA-seq datasets of mDA neurons obtained from patient-derived induced pluripotent stem cell differentiation. We develop a new data integration method based on Non-negative Matrix Tri-Factorization that integrates these datasets with molecular interaction networks, producing condition-specific "gene embeddings". By mining these embeddings, we predict 193 PD-related genes that are largely supported (49.7%) in the literature and are specific to the investigated PINK1 mutation. Enrichment analysis in Kyoto Encyclopedia of Genes and Genomes pathways highlights 10 PD-related molecular mechanisms perturbed during early PD development. Finally, investigating the top 20 prioritized genes reveals 12 previously unrecognized genes associated with PD that represent interesting drug targets.

摘要

帕金森病(PD)是一种复杂的神经退行性疾病,尚无治愈方法。PD 症状的出现对应于中脑多巴胺能(mDA)神经元的 50%丧失,这限制了对 PD 的早期阶段的理解。为了阐明早期 PD 的发展,我们研究了从中分离的诱导多能干细胞分化而来的 mDA 神经元的时间序列 scRNA-seq 数据集。我们开发了一种新的数据集成方法,该方法基于非负矩阵三因子分解,将这些数据集与分子相互作用网络集成在一起,生成特定于条件的“基因嵌入”。通过挖掘这些嵌入,我们预测了 193 个与 PD 相关的基因,这些基因在文献中得到了很大程度的支持(49.7%),并且与所研究的 PINK1 突变特异性相关。京都基因与基因组百科全书通路的富集分析突出了 10 个在早期 PD 发展过程中受到干扰的与 PD 相关的分子机制。最后,研究前 20 个优先基因揭示了 12 个以前未被识别的与 PD 相关的基因,它们代表了有趣的药物靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f48/11094121/5300ccf1db4b/41598_2024_61844_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验