Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2402554121. doi: 10.1073/pnas.2402554121. Epub 2024 May 15.
Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or β-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to β-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in and . The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.
细胞表面糖基是细菌抗原多样性的主要驱动因素。其合成的生物化学和分子生物学对于理解宿主-病原体相互作用以及通过新兴的化学酶和糖工程方法开发疫苗非常重要。糖结构的结构多样性源于糖苷转移酶(GTs)的作用,这些酶利用大量的激活糖供体来构建重复单元,以及添加进一步异质性的修饰酶。经典的 Leloir GT 采用反转或保留机制,根据核苷酸糖供体将 α-或 β-连接的糖掺入,而已知的呋喃核糖基转移酶的机制仅限于 β-连接,因此一些糖中的 α-连接呋喃核糖决定了替代策略。在这里,我们使用 O1 和 O2 脂多糖 O 抗原作为原型,描述了一种广泛而通用的途径,通过细胞外聚合后糖基化将侧链 α-连接的戊呋喃糖掺入。该途径需要聚异戊烯磷酸核糖基合成酶来生成脂联供体,MATE 家族翻转酶将供体转运到周质,以及 GT-C 型 GT(构成 GT136 家族)完成最终的糖基化反应。所表征的系统与分枝杆菌细胞壁阿拉伯聚糖生物合成以及最初在 和 中发现的 O 抗原周质葡萄糖基化具有相似之处,但也有根本的不同。辅助差向异构酶的参与允许掺入的戊呋喃糖的多样化。该结果为微生物糖生物学的广泛概念提供了深入的了解,并提供了原型系统和生物信息学指南,有助于从不同物种中发现更多的例子,其中一些在目前未知的糖中。