Suppr超能文献

大规模机器学习分析临床前癌症研究中的无机纳米颗粒。

A large-scale machine learning analysis of inorganic nanoparticles in preclinical cancer research.

机构信息

ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal.

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

出版信息

Nat Nanotechnol. 2024 Jun;19(6):867-878. doi: 10.1038/s41565-024-01673-7. Epub 2024 May 15.

Abstract

Owing to their distinct physical and chemical properties, inorganic nanoparticles (NPs) have shown promising results in preclinical cancer therapy, but designing and engineering them for effective therapeutic purposes remains a challenge. Although a comprehensive database of inorganic NP research is not currently available, it is crucial for developing effective cancer therapies. In this context, machine learning (ML) has emerged as a transformative tool, but its adaptation to nanomedicine is hindered by inexistent or small datasets. Here we assembled a large database of inorganic NPs, comprising experimental datasets from 745 preclinical studies in cancer nanomedicine. Using descriptive statistics and explainable ML models we mined this database to gain knowledge of inorganic NP design patterns and inform future NP research for cancer treatment. Our analyses suggest that NP shape and therapy type are prominent features in determining in vivo efficacy, measured as a percentage of tumour reduction. Moreover, our database provides a large-scale open-access resource for discriminative ML that the broader nanotechnology community can utilize. Our work blueprints data mining for translational cancer research and offers evidence for standardizing NP reporting to accelerate and de-risk inorganic NP-based drug delivery, which may help to improve patient outcomes in clinical settings.

摘要

由于无机纳米粒子(NPs)具有独特的物理和化学性质,它们在癌症临床前治疗中显示出了有前景的结果,但为了实现有效的治疗目的而对其进行设计和工程化仍然是一个挑战。尽管目前还没有一个全面的无机 NP 研究数据库,但它对于开发有效的癌症治疗方法至关重要。在这种情况下,机器学习(ML)已经成为一种变革性的工具,但由于缺乏或小数据集,它在纳米医学中的应用受到了阻碍。在这里,我们组装了一个大型的无机 NPs 数据库,其中包含了癌症纳米医学中 745 项临床前研究的实验数据集。我们使用描述性统计和可解释的 ML 模型来挖掘这个数据库,以了解无机 NP 设计模式,并为未来的癌症治疗用 NP 研究提供信息。我们的分析表明,NP 的形状和治疗类型是决定体内疗效的突出特征,以肿瘤减少的百分比来衡量。此外,我们的数据库为可区分性 ML 提供了一个大规模的开放访问资源,更广泛的纳米技术社区可以利用它。我们的工作为转化癌症研究中的数据挖掘提供了蓝图,并为标准化 NP 报告提供了证据,以加速和降低基于无机 NP 的药物输送的风险,这可能有助于改善临床环境中的患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验