文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在甲状腺疾病管理中的应用进展

Application progress of artificial intelligence in managing thyroid disease.

作者信息

Lu Qing, Wu Yu, Chang Jing, Zhang Li, Lv Qing, Sun Hui

机构信息

Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Endocrinol (Lausanne). 2025 Jun 17;16:1578455. doi: 10.3389/fendo.2025.1578455. eCollection 2025.


DOI:10.3389/fendo.2025.1578455
PMID:40600013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12208828/
Abstract

Artificial intelligence (AI) has been used to study thyroid diseases since the 1990s. Previously, it mainly concentrated on the diagnosis of thyroid function and distinguishing benign from malignant thyroid nodules. With the rapid development of machine and deep learning, AI has been widely used in multiple areas of thyroid disease management, including image analysis, pathological diagnosis, personalized treatment, patient monitoring, and follow-up. This review systematically examines the evolution of AI applications in thyroid disease management since the 1990s, with a focus on diagnostic innovations, therapeutic personalization, and emerging challenges in clinical implementation. AI not only reduces the subjectivity associated with ultrasound examinations but also enhances the differentiation rate of benign and malignant thyroid nodules, thereby reducing the frequency of unnecessary fine-needle aspirations. AI synthesizes multimodal data, such as ultrasound, electronic health records, and wearable sensors, for continuous health monitoring. This integration facilitates the early detection of subclinical recurrence risk, particularly in patients who have undergone thyroidectomy. Despite the broad prospects of AI applications, challenges related to data privacy, model interpretability, and clinical applicability remain. This review critically evaluates studies across the ultrasound, CT/MRI, and histopathology domains, while addressing barriers to clinical translation, such as data heterogeneity and ethical concerns.

摘要

自20世纪90年代以来,人工智能(AI)已被用于研究甲状腺疾病。此前,它主要集中于甲状腺功能的诊断以及区分甲状腺结节的良恶性。随着机器学习和深度学习的迅速发展,AI已广泛应用于甲状腺疾病管理的多个领域,包括图像分析、病理诊断、个性化治疗、患者监测和随访。本文综述系统地考察了自20世纪90年代以来AI在甲状腺疾病管理中的应用进展,重点关注诊断创新、治疗个性化以及临床实施中出现的挑战。AI不仅降低了超声检查的主观性,还提高了甲状腺结节良恶性的鉴别率,从而减少了不必要的细针穿刺频率。AI整合多模态数据,如超声、电子健康记录和可穿戴传感器,用于持续的健康监测。这种整合有助于早期发现亚临床复发风险,特别是在接受甲状腺切除术的患者中。尽管AI应用前景广阔,但数据隐私、模型可解释性和临床适用性等挑战依然存在。本文综述批判性地评估了超声、CT/MRI和组织病理学领域的研究,同时探讨了临床转化的障碍,如数据异质性和伦理问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b1/12208828/6c7c67da57d2/fendo-16-1578455-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b1/12208828/5279482d3fc5/fendo-16-1578455-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b1/12208828/6c7c67da57d2/fendo-16-1578455-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b1/12208828/5279482d3fc5/fendo-16-1578455-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b1/12208828/6c7c67da57d2/fendo-16-1578455-g002.jpg

相似文献

[1]
Application progress of artificial intelligence in managing thyroid disease.

Front Endocrinol (Lausanne). 2025-6-17

[2]
Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques.

Comput Biol Med. 2024-9

[3]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[4]
Enhancing ultrasonographic detection of hepatocellular carcinoma with artificial intelligence: current applications, challenges and future directions.

BMJ Open Gastroenterol. 2025-7-1

[5]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[6]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

[7]
Application Value of Deep Learning-Based AI Model in the Classification of Breast Nodules.

Br J Hosp Med (Lond). 2025-6-25

[8]
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

Therap Adv Gastroenterol. 2025-6-23

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Advancements in Herpes Zoster Diagnosis, Treatment, and Management: Systematic Review of Artificial Intelligence Applications.

J Med Internet Res. 2025-6-30

本文引用的文献

[1]
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.

Therap Adv Gastroenterol. 2025-2-23

[2]
An update on management of cytologically indeterminate thyroid nodules.

Ann Endocrinol (Paris). 2025-4

[3]
Breaking barriers: noninvasive AI model for BRAF mutation identification.

Int J Comput Assist Radiol Surg. 2025-5

[4]
Multimodal Ultrasound Radiomic Technology for Diagnosing Benign and Malignant Thyroid Nodules of Ti-Rads 4-5: A Multicenter Study.

Sensors (Basel). 2024-9-25

[5]
A prognostic model for thermal ablation of benign thyroid nodules based on interpretable machine learning.

Front Endocrinol (Lausanne). 2024

[6]
Bridging Histopathology and Radiomics Toward Prognosis of Metastasis in Early Breast Cancer.

Microsc Microanal. 2024-8-21

[7]
Ultrasound-based nomogram to predict the recurrence in papillary thyroid carcinoma using machine learning.

BMC Cancer. 2024-7-7

[8]
Targeted sequencing of DNA/RNA combined with radiomics predicts lymph node metastasis of papillary thyroid carcinoma.

Cancer Imaging. 2024-6-17

[9]
Improved Diagnostic Accuracy of Thyroid Fine-Needle Aspiration Cytology with Artificial Intelligence Technology.

Thyroid. 2024-6

[10]
Deep convolutional neural network model ResNeSt for discrimination of papillary thyroid carcinomas and benign nodules in thyroid nodules diagnosed as atypia of undetermined significance.

Gland Surg. 2024-5-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索