Lu Qing, Wu Yu, Chang Jing, Zhang Li, Lv Qing, Sun Hui
Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Front Endocrinol (Lausanne). 2025 Jun 17;16:1578455. doi: 10.3389/fendo.2025.1578455. eCollection 2025.
Artificial intelligence (AI) has been used to study thyroid diseases since the 1990s. Previously, it mainly concentrated on the diagnosis of thyroid function and distinguishing benign from malignant thyroid nodules. With the rapid development of machine and deep learning, AI has been widely used in multiple areas of thyroid disease management, including image analysis, pathological diagnosis, personalized treatment, patient monitoring, and follow-up. This review systematically examines the evolution of AI applications in thyroid disease management since the 1990s, with a focus on diagnostic innovations, therapeutic personalization, and emerging challenges in clinical implementation. AI not only reduces the subjectivity associated with ultrasound examinations but also enhances the differentiation rate of benign and malignant thyroid nodules, thereby reducing the frequency of unnecessary fine-needle aspirations. AI synthesizes multimodal data, such as ultrasound, electronic health records, and wearable sensors, for continuous health monitoring. This integration facilitates the early detection of subclinical recurrence risk, particularly in patients who have undergone thyroidectomy. Despite the broad prospects of AI applications, challenges related to data privacy, model interpretability, and clinical applicability remain. This review critically evaluates studies across the ultrasound, CT/MRI, and histopathology domains, while addressing barriers to clinical translation, such as data heterogeneity and ethical concerns.
自20世纪90年代以来,人工智能(AI)已被用于研究甲状腺疾病。此前,它主要集中于甲状腺功能的诊断以及区分甲状腺结节的良恶性。随着机器学习和深度学习的迅速发展,AI已广泛应用于甲状腺疾病管理的多个领域,包括图像分析、病理诊断、个性化治疗、患者监测和随访。本文综述系统地考察了自20世纪90年代以来AI在甲状腺疾病管理中的应用进展,重点关注诊断创新、治疗个性化以及临床实施中出现的挑战。AI不仅降低了超声检查的主观性,还提高了甲状腺结节良恶性的鉴别率,从而减少了不必要的细针穿刺频率。AI整合多模态数据,如超声、电子健康记录和可穿戴传感器,用于持续的健康监测。这种整合有助于早期发现亚临床复发风险,特别是在接受甲状腺切除术的患者中。尽管AI应用前景广阔,但数据隐私、模型可解释性和临床适用性等挑战依然存在。本文综述批判性地评估了超声、CT/MRI和组织病理学领域的研究,同时探讨了临床转化的障碍,如数据异质性和伦理问题。
Front Endocrinol (Lausanne). 2025-6-17
Comput Biol Med. 2024-9
J Med Internet Res. 2025-6-23
Br J Hosp Med (Lond). 2025-6-25
Therap Adv Gastroenterol. 2025-6-23
Cochrane Database Syst Rev. 2022-5-20
Therap Adv Gastroenterol. 2025-2-23
Ann Endocrinol (Paris). 2025-4
Int J Comput Assist Radiol Surg. 2025-5
Front Endocrinol (Lausanne). 2024
Microsc Microanal. 2024-8-21