Suppr超能文献

基于预测信息的多体贝叶斯动态功能连接方法

A predictor-informed multi-subject bayesian approach for dynamic functional connectivity.

机构信息

Department of Statistics, University of California, Irvine, Irvine, California, United States of America.

Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America.

出版信息

PLoS One. 2024 May 16;19(5):e0298651. doi: 10.1371/journal.pone.0298651. eCollection 2024.

Abstract

Dynamic functional connectivity investigates how the interactions among brain regions vary over the course of an fMRI experiment. Such transitions between different individual connectivity states can be modulated by changes in underlying physiological mechanisms that drive functional network dynamics, e.g., changes in attention or cognitive effort. In this paper, we develop a multi-subject Bayesian framework where the estimation of dynamic functional networks is informed by time-varying exogenous physiological covariates that are simultaneously recorded in each subject during the fMRI experiment. More specifically, we consider a dynamic Gaussian graphical model approach where a non-homogeneous hidden Markov model is employed to classify the fMRI time series into latent neurological states. We assume the state-transition probabilities to vary over time and across subjects as a function of the underlying covariates, allowing for the estimation of recurrent connectivity patterns and the sharing of networks among the subjects. We further assume sparsity in the network structures via shrinkage priors, and achieve edge selection in the estimated graph structures by introducing a multi-comparison procedure for shrinkage-based inferences with Bayesian false discovery rate control. We evaluate the performances of our method vs alternative approaches on synthetic data. We apply our modeling framework on a resting-state experiment where fMRI data have been collected concurrently with pupillometry measurements, as a proxy of cognitive processing, and assess the heterogeneity of the effects of changes in pupil dilation on the subjects' propensity to change connectivity states. The heterogeneity of state occupancy across subjects provides an understanding of the relationship between increased pupil dilation and transitions toward different cognitive states.

摘要

动态功能连接研究了大脑区域之间的相互作用如何随 fMRI 实验的过程而变化。这种不同个体连接状态之间的转变可以通过驱动功能网络动态的潜在生理机制的变化来调节,例如注意力或认知努力的变化。在本文中,我们开发了一种多主体贝叶斯框架,其中动态功能网络的估计受到同时在每个主体的 fMRI 实验期间记录的时变外生生理协变量的影响。更具体地说,我们考虑了一种动态高斯图形模型方法,其中非齐次隐马尔可夫模型用于将 fMRI 时间序列分类为潜在的神经状态。我们假设状态转移概率随时间和主体而变化,作为潜在协变量的函数,允许估计递归连接模式并在主体之间共享网络。我们进一步通过收缩先验假设网络结构的稀疏性,并通过引入基于贝叶斯错误发现率控制的收缩推理的多比较程序来实现估计图结构中的边缘选择。我们评估了我们的方法与替代方法在合成数据上的性能。我们将我们的建模框架应用于静息态实验,其中 fMRI 数据与瞳孔测量同时收集,作为认知处理的代理,并评估瞳孔扩张变化对主体改变连接状态倾向的影响的异质性。主体状态占有率的异质性提供了对增加瞳孔扩张与向不同认知状态转变之间关系的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a1/11098372/e620cb988bc3/pone.0298651.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验