Suppr超能文献

用潜在因子高斯过程对动态功能连接进行建模。

Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes.

作者信息

Li Lingge, Pluta Dustin, Shahbaba Babak, Fortin Norbert, Ombao Hernando, Baldi Pierre

机构信息

UC Irvine.

KAUST.

出版信息

Adv Neural Inf Process Syst. 2019 Dec;32:8263-8273.

Abstract

Dynamic functional connectivity, as measured by the time-varying covariance of neurological signals, is believed to play an important role in many aspects of cognition. While many methods have been proposed, reliably establishing the presence and characteristics of brain connectivity is challenging due to the high dimensionality and noisiness of neuroimaging data. We present a latent factor Gaussian process model which addresses these challenges by learning a parsimonious representation of connectivity dynamics. The proposed model naturally allows for inference and visualization of connectivity dynamics. As an illustration of the scientific utility of the model, application to a data set of rat local field potential activity recorded during a complex non-spatial memory task provides evidence of stimuli differentiation.

摘要

动态功能连接性通过神经信号的时变协方差来衡量,被认为在认知的许多方面发挥着重要作用。虽然已经提出了许多方法,但由于神经成像数据的高维度和噪声,可靠地确定大脑连接性的存在和特征具有挑战性。我们提出了一种潜在因子高斯过程模型,该模型通过学习连接动态的简约表示来应对这些挑战。所提出的模型自然地允许对连接动态进行推断和可视化。作为该模型科学效用的一个例证,将其应用于在复杂的非空间记忆任务中记录的大鼠局部场电位活动数据集,提供了刺激分化的证据。

相似文献

2
A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data.
Biometrics. 2018 Sep;74(3):823-833. doi: 10.1111/biom.12844. Epub 2018 Jan 22.
4
Algorithms of causal inference for the analysis of effective connectivity among brain regions.
Front Neuroinform. 2014 Jul 2;8:64. doi: 10.3389/fninf.2014.00064. eCollection 2014.
5
Gaussian process linking functions for mind, brain, and behavior.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29398-29406. doi: 10.1073/pnas.1912342117.
6
Brain kernel: A new spatial covariance function for fMRI data.
Neuroimage. 2021 Dec 15;245:118580. doi: 10.1016/j.neuroimage.2021.118580. Epub 2021 Nov 3.
7
A Hierarchical Bayesian Model for Differential Connectivity in Multi-trial Brain Signals.
Econom Stat. 2020 Jul;15:117-135. doi: 10.1016/j.ecosta.2020.03.009. Epub 2020 May 20.
8
Tracking spatial dynamics of functional connectivity during a task.
Neuroimage. 2021 Oct 1;239:118310. doi: 10.1016/j.neuroimage.2021.118310. Epub 2021 Jun 24.
9
Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.
PLoS One. 2017 Apr 3;12(4):e0174918. doi: 10.1371/journal.pone.0174918. eCollection 2017.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

2
Time-varying functional connectivity as Wishart processes.
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00184. eCollection 2024.
4
A predictor-informed multi-subject bayesian approach for dynamic functional connectivity.
PLoS One. 2024 May 16;19(5):e0298651. doi: 10.1371/journal.pone.0298651. eCollection 2024.
5
Multiple feature fusion transformer for modeling penicillin fermentation process with unequal sampling intervals.
Bioprocess Biosyst Eng. 2023 Nov;46(11):1677-1693. doi: 10.1007/s00449-023-02929-7. Epub 2023 Oct 25.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices.
Bayesian Anal. 2020 Dec;15(4):1199-1228. doi: 10.1214/19-ba1173. Epub 2019 Nov 4.
3
Machine learning in resting-state fMRI analysis.
Magn Reson Imaging. 2019 Dec;64:101-121. doi: 10.1016/j.mri.2019.05.031. Epub 2019 Jun 5.
4
Human consciousness is supported by dynamic complex patterns of brain signal coordination.
Sci Adv. 2019 Feb 6;5(2):eaat7603. doi: 10.1126/sciadv.aat7603. eCollection 2019 Feb.
5
Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models.
IEEE Trans Med Imaging. 2018 Apr;37(4):1011-1023. doi: 10.1109/TMI.2017.2780185.
6
Statistical models for brain signals with properties that evolve across trials.
Neuroimage. 2018 Oct 15;180(Pt B):609-618. doi: 10.1016/j.neuroimage.2017.11.061. Epub 2017 Dec 7.
7
A Bayesian supervised dual-dimensionality reduction model for simultaneous decoding of LFP and spike train signals.
Stat (Int Stat Inst). 2017;6(1):53-67. doi: 10.1002/sta4.137. Epub 2017 Feb 7.
8
The dynamic functional connectome: State-of-the-art and perspectives.
Neuroimage. 2017 Oct 15;160:41-54. doi: 10.1016/j.neuroimage.2016.12.061. Epub 2016 Dec 26.
9
Nonspatial Sequence Coding in CA1 Neurons.
J Neurosci. 2016 Feb 3;36(5):1547-63. doi: 10.1523/JNEUROSCI.2874-15.2016.
10
On spurious and real fluctuations of dynamic functional connectivity during rest.
Neuroimage. 2015 Jan 1;104:430-6. doi: 10.1016/j.neuroimage.2014.09.007. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验