Suppr超能文献

利用隐半马尔可夫模型改进动态功能连接中的状态变化估计。

Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models.

机构信息

Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Neuroimage. 2019 May 1;191:243-257. doi: 10.1016/j.neuroimage.2019.02.013. Epub 2019 Feb 10.

Abstract

The study of functional brain networks has grown rapidly over the past decade. While most functional connectivity (FC) analyses estimate one static network structure for the entire length of the functional magnetic resonance imaging (fMRI) time series, recently there has been increased interest in studying time-varying changes in FC. Hidden Markov models (HMMs) have proven to be a useful modeling approach for discovering repeating graphs of interacting brain regions (brain states). However, a limitation lies in HMMs assuming that the sojourn time, the number of consecutive time points in a state, is geometrically distributed. This may encourage inaccurate estimation of the time spent in a state before switching to another state. We propose a hidden semi-Markov model (HSMM) approach for inferring time-varying brain networks from fMRI data, which explicitly models the sojourn distribution. Specifically, we propose using HSMMs to find each subject's most probable series of network states and the graphs associated with each state, while properly estimating and modeling the sojourn distribution for each state. We perform a simulation study, as well as an analysis on both task-based fMRI data from an anxiety-inducing experiment and resting-state fMRI data from the Human Connectome Project. Our results demonstrate the importance of model choice when estimating sojourn times and reveal their potential for understanding healthy and diseased brain mechanisms.

摘要

过去十年中,功能脑网络的研究迅速发展。虽然大多数功能连接(FC)分析都估计整个功能磁共振成像(fMRI)时间序列的一个静态网络结构,但最近人们越来越感兴趣于研究 FC 的时变变化。隐马尔可夫模型(HMM)已被证明是一种用于发现相互作用的脑区(脑状态)重复图的有用建模方法。然而,其局限性在于 HMM 假设逗留时间,即处于一个状态的连续时间点的数量,是几何分布的。这可能会鼓励在切换到另一个状态之前对处于一个状态所花费的时间进行不准确的估计。我们提出了一种从 fMRI 数据中推断时变脑网络的隐半马尔可夫模型(HSMM)方法,该方法明确地对逗留分布进行建模。具体来说,我们提出使用 HSMM 找到每个受试者最可能的网络状态序列以及与每个状态相关的图形,同时正确估计和建模每个状态的逗留分布。我们进行了一项模拟研究,以及对一项诱发焦虑的实验的基于任务的 fMRI 数据和人类连接组计划的静息态 fMRI 数据的分析。我们的结果表明,在估计逗留时间时模型选择的重要性,并揭示了它们用于理解健康和患病大脑机制的潜力。

相似文献

1
Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models.
Neuroimage. 2019 May 1;191:243-257. doi: 10.1016/j.neuroimage.2019.02.013. Epub 2019 Feb 10.
2
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Neuroimage. 2017 Jul 15;155:271-290. doi: 10.1016/j.neuroimage.2017.02.083. Epub 2017 Mar 4.
3
Interpreting temporal fluctuations in resting-state functional connectivity MRI.
Neuroimage. 2017 Dec;163:437-455. doi: 10.1016/j.neuroimage.2017.09.012. Epub 2017 Sep 12.
5
A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI.
J Neurosci Methods. 2024 Nov;411:110275. doi: 10.1016/j.jneumeth.2024.110275. Epub 2024 Sep 4.
6
Time-dependence of graph theory metrics in functional connectivity analysis.
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.
8
A predictor-informed multi-subject bayesian approach for dynamic functional connectivity.
PLoS One. 2024 May 16;19(5):e0298651. doi: 10.1371/journal.pone.0298651. eCollection 2024.
9
Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
Brain Connect. 2018 Apr;8(3):139-165. doi: 10.1089/brain.2017.0511. Epub 2018 Mar 13.
10
Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models.
IEEE Trans Med Imaging. 2018 Apr;37(4):1011-1023. doi: 10.1109/TMI.2017.2780185.

引用本文的文献

1
Brain network dynamics associated with intentional weight loss in older adults.
Apert Neuro. 2025;5. doi: 10.52294/001c.128461. Epub 2025 Feb 10.
2
Identifying dynamic reproducible brain states using a predictive modelling approach.
Imaging Neurosci (Camb). 2025 Apr 17;3. doi: 10.1162/imag_a_00540. eCollection 2025.
3
Challenges in the measurement and interpretation of dynamic functional connectivity.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00366. eCollection 2024.
4
Dynamic Resting-State Network Markers of Disruptive Behavior Problems in Youth.
bioRxiv. 2025 May 20:2025.05.15.654366. doi: 10.1101/2025.05.15.654366.
5
Triple network dynamics and future alcohol consumption in adolescents.
Alcohol Clin Exp Res (Hoboken). 2025 Jun;49(6):1206-1220. doi: 10.1111/acer.70043. Epub 2025 May 30.
8
Time Persistence of the FMRI Resting-State Functional Brain Networks.
J Neurosci. 2025 Mar 19;45(12):e1570242025. doi: 10.1523/JNEUROSCI.1570-24.2025.
9
Contrasting topologies of synchronous and asynchronous functional brain networks.
Netw Neurosci. 2024 Dec 10;8(4):1491-1506. doi: 10.1162/netn_a_00413. eCollection 2024.
10
Statistical Brain Network Analysis.
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.

本文引用的文献

1
A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data.
J Am Stat Assoc. 2018;113(521):134-151. doi: 10.1080/01621459.2017.1379404. Epub 2018 May 16.
2
Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models.
IEEE Trans Med Imaging. 2018 Apr;37(4):1011-1023. doi: 10.1109/TMI.2017.2780185.
3
Statistical models for brain signals with properties that evolve across trials.
Neuroimage. 2018 Oct 15;180(Pt B):609-618. doi: 10.1016/j.neuroimage.2017.11.061. Epub 2017 Dec 7.
4
Brain network dynamics are hierarchically organized in time.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12827-12832. doi: 10.1073/pnas.1705120114. Epub 2017 Oct 30.
5
Comparing test-retest reliability of dynamic functional connectivity methods.
Neuroimage. 2017 Sep;158:155-175. doi: 10.1016/j.neuroimage.2017.07.005. Epub 2017 Jul 5.
6
A Unified Estimation Framework for State-Related Changes in Effective Brain Connectivity.
IEEE Trans Biomed Eng. 2017 Apr;64(4):844-858. doi: 10.1109/TBME.2016.2580738. Epub 2016 Jun 14.
7
Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data.
Front Neurosci. 2015 Sep 4;9:285. doi: 10.3389/fnins.2015.00285. eCollection 2015.
8
The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery.
Neuron. 2014 Oct 22;84(2):262-74. doi: 10.1016/j.neuron.2014.10.015.
9
On spurious and real fluctuations of dynamic functional connectivity during rest.
Neuroimage. 2015 Jan 1;104:430-6. doi: 10.1016/j.neuroimage.2014.09.007. Epub 2014 Sep 16.
10
Modern network science of neurological disorders.
Nat Rev Neurosci. 2014 Oct;15(10):683-95. doi: 10.1038/nrn3801. Epub 2014 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验