Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Neuroimage. 2019 May 1;191:243-257. doi: 10.1016/j.neuroimage.2019.02.013. Epub 2019 Feb 10.
The study of functional brain networks has grown rapidly over the past decade. While most functional connectivity (FC) analyses estimate one static network structure for the entire length of the functional magnetic resonance imaging (fMRI) time series, recently there has been increased interest in studying time-varying changes in FC. Hidden Markov models (HMMs) have proven to be a useful modeling approach for discovering repeating graphs of interacting brain regions (brain states). However, a limitation lies in HMMs assuming that the sojourn time, the number of consecutive time points in a state, is geometrically distributed. This may encourage inaccurate estimation of the time spent in a state before switching to another state. We propose a hidden semi-Markov model (HSMM) approach for inferring time-varying brain networks from fMRI data, which explicitly models the sojourn distribution. Specifically, we propose using HSMMs to find each subject's most probable series of network states and the graphs associated with each state, while properly estimating and modeling the sojourn distribution for each state. We perform a simulation study, as well as an analysis on both task-based fMRI data from an anxiety-inducing experiment and resting-state fMRI data from the Human Connectome Project. Our results demonstrate the importance of model choice when estimating sojourn times and reveal their potential for understanding healthy and diseased brain mechanisms.
过去十年中,功能脑网络的研究迅速发展。虽然大多数功能连接(FC)分析都估计整个功能磁共振成像(fMRI)时间序列的一个静态网络结构,但最近人们越来越感兴趣于研究 FC 的时变变化。隐马尔可夫模型(HMM)已被证明是一种用于发现相互作用的脑区(脑状态)重复图的有用建模方法。然而,其局限性在于 HMM 假设逗留时间,即处于一个状态的连续时间点的数量,是几何分布的。这可能会鼓励在切换到另一个状态之前对处于一个状态所花费的时间进行不准确的估计。我们提出了一种从 fMRI 数据中推断时变脑网络的隐半马尔可夫模型(HSMM)方法,该方法明确地对逗留分布进行建模。具体来说,我们提出使用 HSMM 找到每个受试者最可能的网络状态序列以及与每个状态相关的图形,同时正确估计和建模每个状态的逗留分布。我们进行了一项模拟研究,以及对一项诱发焦虑的实验的基于任务的 fMRI 数据和人类连接组计划的静息态 fMRI 数据的分析。我们的结果表明,在估计逗留时间时模型选择的重要性,并揭示了它们用于理解健康和患病大脑机制的潜力。