Biostatistics Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
Biostatistics Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
Neuroimage. 2021 Aug 1;236:118181. doi: 10.1016/j.neuroimage.2021.118181. Epub 2021 May 20.
Although there is a rapidly growing literature on dynamic connectivity methods, the primary focus has been on separate network estimation for each individual, which fails to leverage common patterns of information. We propose novel graph-theoretic approaches for estimating a population of dynamic networks that are able to borrow information across multiple heterogeneous samples in an unsupervised manner and guided by covariate information. Specifically, we develop a Bayesian product mixture model that imposes independent mixture priors at each time scan and uses covariates to model the mixture weights, which results in time-varying clusters of samples designed to pool information. The computation is carried out using an efficient Expectation-Maximization algorithm. Extensive simulation studies illustrate sharp gains in recovering the true dynamic network over existing dynamic connectivity methods. An analysis of fMRI block task data with behavioral interventions reveal sub-groups of individuals having similar dynamic connectivity, and identifies intervention-related dynamic network changes that are concentrated in biologically interpretable brain regions. In contrast, existing dynamic connectivity approaches are able to detect minimal or no changes in connectivity over time, which seems biologically unrealistic and highlights the challenges resulting from the inability to systematically borrow information across samples.
尽管关于动态连接方法的文献迅速增加,但主要关注点一直是针对每个个体的单独网络估计,这未能利用信息的常见模式。我们提出了新的图论方法来估计动态网络的总体,这些方法能够以无监督的方式跨多个异构样本借用信息,并由协变量信息引导。具体来说,我们开发了一种贝叶斯乘积混合模型,该模型在每个时间扫描时施加独立的混合先验,并使用协变量来模拟混合权重,从而导致旨在汇集信息的时间变化的样本聚类。计算使用高效的期望最大化算法进行。广泛的模拟研究表明,与现有的动态连接方法相比,在恢复真实动态网络方面有明显的收益。对具有行为干预的 fMRI 块任务数据的分析揭示了具有相似动态连接的个体亚组,并确定了集中在生物可解释脑区的与干预相关的动态网络变化。相比之下,现有的动态连接方法能够检测到随时间变化的连接性最小或没有变化,这似乎在生物学上是不现实的,并强调了由于无法系统地跨样本借用信息而导致的挑战。