Suppr超能文献

一种研究人类神经影像学中动态功能连接状态的新型隐马尔可夫方法。

A Novel Hidden Markov Approach to Studying Dynamic Functional Connectivity States in Human Neuroimaging.

机构信息

Department of Bioengineering, University of California, Riverside, Riverside, California, USA.

Center for Advanced Neuroimaging, University of California, Riverside, Riverside, California, USA.

出版信息

Brain Connect. 2023 Apr;13(3):154-163. doi: 10.1089/brain.2022.0031. Epub 2023 Feb 16.

Abstract

Hidden Markov models (HMMs) are a popular choice to extract and examine recurring patterns of activity or functional connectivity in neuroimaging data, both in terms of spatial patterns and their temporal progression. Although many diverse HMMs have been applied to neuroimaging data, most have defined states based on activity levels (intensity-based [IB] states) rather than patterns of functional connectivity between brain areas (connectivity-based states), which is problematic if we want to understand connectivity dynamics: IB states are unlikely to provide comprehensive information about dynamic connectivity patterns. We addressed this problem by introducing a new HMM that defines states based on full functional connectivity (FFC) profiles among brain regions. We empirically explored the behavior of this new model in comparison to existing approaches based on IB or summed functional connectivity states using the Human Connectome Project unrelated 100 functional magnetic resonance imaging "resting-state" dataset. Our FFC model discovered connectivity states with more distinguishable (i.e., unique and separable from each other) patterns than previous approaches, and recovered simulated connectivity-based states more faithfully than the other models tested. Thus, if our goal is to extract and interpret connectivity states in neuroimaging data, our new model outperforms previous methods, which miss crucial information about the evolution of functional connectivity in the brain. Impact statement Hidden Markov models (HMMs) can be used to investigate brain states noninvasively. Previous models "recover" connectivity from intensity-based hidden states, or from connectivity "summed" across nodes. In this study, we introduce a novel connectivity-based HMM and show how it can reveal true connectivity hidden states under minimal assumptions.

摘要

隐马尔可夫模型(HMM)是一种从神经影像学数据中提取和检查活动或功能连接重复模式的常用方法,既可以从空间模式方面,也可以从时间演变方面进行研究。尽管已经有许多不同的 HMM 应用于神经影像学数据,但大多数模型都是基于活动水平(基于强度[IB]的状态)而不是大脑区域之间功能连接模式(基于连接的状态)来定义状态,如果我们想要了解连接动力学,这就存在问题:IB 状态不太可能提供关于动态连接模式的全面信息。我们通过引入一种新的 HMM 来解决这个问题,该模型基于大脑区域之间的全功能连接(FFC)分布来定义状态。我们使用人类连接组计划无关的 100 个功能磁共振成像“静息状态”数据集,对这个新模型与基于 IB 或总功能连接状态的现有方法进行了实证比较。我们的 FFC 模型发现的连接状态具有更可区分的模式(即彼此独特且可分离),比以前的方法更能真实地恢复模拟的基于连接的状态。因此,如果我们的目标是从神经影像学数据中提取和解释连接状态,那么我们的新模型优于以前的方法,因为后者会错过有关大脑功能连接演变的重要信息。

相似文献

1
A Novel Hidden Markov Approach to Studying Dynamic Functional Connectivity States in Human Neuroimaging.
Brain Connect. 2023 Apr;13(3):154-163. doi: 10.1089/brain.2022.0031. Epub 2023 Feb 16.
2
Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models.
Neuroimage. 2019 May 1;191:243-257. doi: 10.1016/j.neuroimage.2019.02.013. Epub 2019 Feb 10.
3
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Neuroimage. 2017 Jul 15;155:271-290. doi: 10.1016/j.neuroimage.2017.02.083. Epub 2017 Mar 4.
4
Interpreting temporal fluctuations in resting-state functional connectivity MRI.
Neuroimage. 2017 Dec;163:437-455. doi: 10.1016/j.neuroimage.2017.09.012. Epub 2017 Sep 12.
5
Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
Neuroimage. 2019 Jan 1;184:609-620. doi: 10.1016/j.neuroimage.2018.09.054. Epub 2018 Sep 27.
6
Characterizing and Differentiating Brain State Dynamics via Hidden Markov Models.
Brain Topogr. 2015 Sep;28(5):666-679. doi: 10.1007/s10548-014-0406-2. Epub 2014 Oct 21.
7
Brain state dynamics differ between eyes open and eyes closed rest.
Hum Brain Mapp. 2024 Jul 15;45(10):e26746. doi: 10.1002/hbm.26746.
8
Modeling regional dynamics in low-frequency fluctuation and its application to Autism spectrum disorder diagnosis.
Neuroimage. 2019 Jan 1;184:669-686. doi: 10.1016/j.neuroimage.2018.09.043. Epub 2018 Sep 22.
9
Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model.
IEEE Trans Med Imaging. 2020 Feb;39(2):488-498. doi: 10.1109/TMI.2019.2929959. Epub 2019 Jul 19.
10
Improved dynamic functional connectivity estimation with an alternating hidden Markov model.
Cogn Neurodyn. 2023 Oct;17(5):1381-1398. doi: 10.1007/s11571-022-09874-3. Epub 2022 Nov 3.

引用本文的文献

1
Lifespan oscillatory dynamics in lexical production: A population-based MEG resting-state analysis.
Imaging Neurosci (Camb). 2025 Apr 28;3. doi: 10.1162/imag_a_00551. eCollection 2025.
2
Targeted Time-Varying Functional Connectivity.
Hum Brain Mapp. 2025 Mar;46(4):e70157. doi: 10.1002/hbm.70157.
5
A predictor-informed multi-subject bayesian approach for dynamic functional connectivity.
PLoS One. 2024 May 16;19(5):e0298651. doi: 10.1371/journal.pone.0298651. eCollection 2024.

本文引用的文献

1
A new model for simultaneous dimensionality reduction and time-varying functional connectivity estimation.
PLoS Comput Biol. 2021 Apr 16;17(4):e1008580. doi: 10.1371/journal.pcbi.1008580. eCollection 2021 Apr.
2
Behavioural relevance of spontaneous, transient brain network interactions in fMRI.
Neuroimage. 2021 Apr 1;229:117713. doi: 10.1016/j.neuroimage.2020.117713. Epub 2021 Jan 6.
3
Questions and controversies in the study of time-varying functional connectivity in resting fMRI.
Netw Neurosci. 2020 Feb 1;4(1):30-69. doi: 10.1162/netn_a_00116. eCollection 2020.
4
Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep.
Nat Commun. 2019 Mar 4;10(1):1035. doi: 10.1038/s41467-019-08934-3.
5
Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks.
Nat Commun. 2018 Jul 30;9(1):2987. doi: 10.1038/s41467-018-05316-z.
6
Brain network dynamics are hierarchically organized in time.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12827-12832. doi: 10.1073/pnas.1705120114. Epub 2017 Oct 30.
7
Discovering dynamic brain networks from big data in rest and task.
Neuroimage. 2018 Oct 15;180(Pt B):646-656. doi: 10.1016/j.neuroimage.2017.06.077. Epub 2017 Jun 29.
9
Spectrally resolved fast transient brain states in electrophysiological data.
Neuroimage. 2016 Feb 1;126:81-95. doi: 10.1016/j.neuroimage.2015.11.047. Epub 2015 Nov 26.
10
Characterizing and Differentiating Brain State Dynamics via Hidden Markov Models.
Brain Topogr. 2015 Sep;28(5):666-679. doi: 10.1007/s10548-014-0406-2. Epub 2014 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验