Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), Université de Montpellier, National Centre for Scientific Research (CNRS), French National Research Institute for Sustainable Development (IRD), Montpellier, France.
Laboratoire Plasma et Conversion d'Energie (LAPLACE), National Centre for Scientific Research (CNRS), Institut National Polytechnique de Toulouse (Toulouse INP), Université Toulouse 3-Paul Sabatier, Toulouse, France.
PLoS Comput Biol. 2024 May 17;20(5):e1012124. doi: 10.1371/journal.pcbi.1012124. eCollection 2024 May.
Projects such as the European Covid-19 Forecast Hub publish forecasts on the national level for new deaths, new cases, and hospital admissions, but not direct measurements of hospital strain like critical care bed occupancy at the sub-national level, which is of particular interest to health professionals for planning purposes. We present a sub-national French framework for forecasting hospital strain based on a non-Markovian compartmental model, its associated online visualisation tool and a retrospective evaluation of the real-time forecasts it provided from January to December 2021 by comparing to three baselines derived from standard statistical forecasting methods (a naive model, auto-regression, and an ensemble of exponential smoothing and ARIMA). In terms of median absolute error for forecasting critical care unit occupancy at the two-week horizon, our model only outperformed the naive baseline for 4 out of 14 geographical units and underperformed compared to the ensemble baseline for 5 of them at the 90% confidence level (n = 38). However, for the same level at the 4 week horizon, our model was never statistically outperformed for any unit despite outperforming the baselines 10 times spanning 7 out of 14 geographical units. This implies modest forecasting utility for longer horizons which may justify the application of non-Markovian compartmental models in the context of hospital-strain surveillance for future pandemics.
项目如欧洲 COVID-19 预测中心发布的全国范围内新死亡、新病例和住院人数的预测,但不包括次国家级别的医院压力的直接测量,如重症监护床位占用率,这对于卫生专业人员的规划目的来说特别感兴趣。我们提出了一个基于非马尔可夫房室模型的法国次国家级医院压力预测框架,及其相关的在线可视化工具,并通过与从标准统计预测方法(朴素模型、自回归和指数平滑和 ARIMA 的集成)得出的三个基线进行比较,对 2021 年 1 月至 12 月实时预测进行了回顾性评估。就预测重症监护病房占用率的两周预测中位数绝对误差而言,我们的模型仅在 14 个地理区域中的 4 个中优于朴素基线,在 90%置信水平(n = 38)下,5 个中劣于集成基线。然而,对于同样的 4 周预测中位数绝对误差,我们的模型在任何区域都没有在统计学上优于任何基线,尽管在 7 个地理区域中的 10 次超过了基线。这意味着对于更长的时间范围,预测效果适度,这可能证明在未来的大流行中,非马尔可夫房室模型在医院压力监测中的应用是合理的。