LabGenius Ltd, The Biscuit Factory, 100 Drummond Road, London SE16 4DG, UK; Department of Computer Science, University College London, 66-72 Gower St, London WC1E 6EA, UK.
R&D Large Molecules Research Platform, Sanofi Deutschland GmbH, Industriepark Höchst, Frankfurt Am Main, Germany.
Drug Discov Today. 2024 Jul;29(7):104025. doi: 10.1016/j.drudis.2024.104025. Epub 2024 May 17.
In the past 40 years, therapeutic antibody discovery and development have advanced considerably, with machine learning (ML) offering a promising way to speed up the process by reducing costs and the number of experiments required. Recent progress in ML-guided antibody design and development (D&D) has been hindered by the diversity of data sets and evaluation methods, which makes it difficult to conduct comparisons and assess utility. Establishing standards and guidelines will be crucial for the wider adoption of ML and the advancement of the field. This perspective critically reviews current practices, highlights common pitfalls and proposes method development and evaluation guidelines for various ML-based techniques in therapeutic antibody D&D. Addressing challenges across the ML process, best practices are recommended for each stage to enhance reproducibility and progress.
在过去的 40 年中,治疗性抗体的发现和开发取得了长足的进步,机器学习(ML)提供了一种有前途的方法,可以通过降低成本和所需实验的数量来加速这一过程。最近在 ML 指导的抗体设计和开发(D&D)方面的进展受到了数据集和评估方法多样性的阻碍,这使得比较和评估实用性变得困难。建立标准和指南对于更广泛地采用 ML 和推进该领域的发展至关重要。本观点批判性地回顾了当前的实践,强调了常见的陷阱,并为治疗性抗体 D&D 中的各种基于 ML 的技术提出了方法开发和评估指南。针对 ML 过程中的挑战,建议在每个阶段采用最佳实践,以提高可重复性和进展。