Gombert-Labedens Marie, Alzueta Elisabet, Perez-Amparan Evelyn, Yuksel Dilara, Kiss Orsolya, de Zambotti Massimiliano, Simon Katharine, Zhang Jing, Shuster Alessandra, Morehouse Allison, Alessandro Pena Andres, Mednick Sara, Baker Fiona C
Center for Health Sciences, SRI International, Menlo Park, California, USA.
Department of Cognitive Science, University of California, Irvine, Irvine, California, USA.
J Biol Rhythms. 2024 Aug;39(4):331-350. doi: 10.1177/07487304241247893. Epub 2024 May 20.
The menstrual cycle is a loop involving the interplay of different organs and hormones, with the capacity to impact numerous physiological processes, including body temperature and heart rate, which in turn display menstrual rhythms. The advent of wearable devices that can continuously track physiological data opens the possibility of using these prolonged time series of skin temperature data to noninvasively detect the temperature variations that occur in ovulatory menstrual cycles. Here, we show that the menstrual skin temperature variation is better represented by a model of oscillation, the cosinor, than by a biphasic square wave model. We describe how applying a cosinor model to a menstrual cycle of distal skin temperature data can be used to assess whether the data oscillate or not, and in cases of oscillation, rhythm metrics for the cycle, including mesor, amplitude, and acrophase, can be obtained. We apply the method to wearable temperature data collected at a minute resolution each day from 120 female individuals over a menstrual cycle to illustrate how the method can be used to derive and present menstrual cycle characteristics, which can be used in other analyses examining indicators of female health. The cosinor method, frequently used in circadian rhythms studies, can be employed in research to facilitate the assessment of menstrual cycle effects on physiological parameters, and in clinical settings to use the characteristics of the menstrual cycles as health markers or to facilitate menstrual chronotherapy.
月经周期是一个涉及不同器官和激素相互作用的循环,能够影响众多生理过程,包括体温和心率,而体温和心率又会呈现出月经节律。可连续追踪生理数据的可穿戴设备的出现,开启了利用这些长时间的皮肤温度数据序列来无创检测排卵性月经周期中温度变化的可能性。在此,我们表明,与双相方波模型相比,月经皮肤温度变化用振荡模型——协变量分析模型来表示更为合适。我们描述了如何将协变量分析模型应用于远端皮肤温度数据的月经周期,以评估数据是否振荡,以及在振荡情况下,如何获得该周期的节律指标,包括平均变化值、振幅和高峰期。我们将该方法应用于在一个月经周期内每天以分钟分辨率收集的120名女性个体的可穿戴温度数据,以说明该方法如何用于推导和呈现月经周期特征,这些特征可用于其他检查女性健康指标的分析中。协变量分析方法常用于昼夜节律研究,可在研究中用于促进对月经周期对生理参数影响的评估,在临床环境中用于将月经周期特征用作健康标志物或促进月经时间疗法。