Woller Aurore, Gonze Didier
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
Unité de Chronobiologie Théorique, Faculté des Sciences CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium.
Biology (Basel). 2021 Mar 10;10(3):207. doi: 10.3390/biology10030207.
Biological clocks are cell-autonomous oscillators that can be entrained by periodic environmental cues. This allows organisms to anticipate predictable daily environmental changes and, thereby, to partition physiological processes into appropriate phases with respect to these changing external conditions. Nowadays our 24/7 society challenges this delicate equilibrium. Indeed, many studies suggest that perturbations such as chronic jet lag, ill-timed eating patterns, or shift work increase the susceptibility to cardiometabolic disorders, diabetes, and cancers. However the underlying mechanisms are still poorly understood. A deeper understanding of this complex, dynamic system requires a global holistic approach for which mathematical modeling can be highly beneficial. In this review, we summarize several experimental works pertaining to the effect of adverse conditions on clock gene expression and on physiology, and we show how computational models can bring interesting insights into the links between circadian misalignment and metabolic diseases.
生物钟是细胞自主振荡器,可被周期性环境线索所调节。这使生物体能够预测可预测的每日环境变化,从而将生理过程相对于这些不断变化的外部条件划分为适当的阶段。如今,我们全天候运转的社会对这种微妙的平衡构成了挑战。事实上,许多研究表明,诸如长期时差反应、不合时宜的饮食模式或轮班工作等干扰会增加患心脏代谢疾病、糖尿病和癌症的易感性。然而,其潜在机制仍知之甚少。对这个复杂的动态系统有更深入的理解需要一种全局整体方法,数学建模对此可能非常有益。在这篇综述中,我们总结了一些关于不利条件对时钟基因表达和生理学影响的实验工作,并展示了计算模型如何能为昼夜节律失调与代谢疾病之间的联系带来有趣的见解。