Suppr超能文献

细胞生物介质中流体流动的理论建模:概述。

Theoretical modeling of fluid flow in cellular biological media: an overview.

机构信息

Department of Chemical Engineering, University of Patras, GR-26504 Patras, Achaia, Greece.

出版信息

Math Biosci. 2010 Jun;225(2):83-93. doi: 10.1016/j.mbs.2010.03.003. Epub 2010 Mar 19.

Abstract

Fluid-structure interactions strongly affect, in multiple ways, the structure and function of cellular biological media, such as tissues, biofilms, and cell-entrapping gels. Mathematical models and computer simulation are important tools in advancing our understanding of these interactions, interpreting experimental observations, and designing novel processes and biomaterials. In this paper, we present a comprehensive survey and highlight promising directions of future research on theoretical modeling of momentum transport in cellular biological media with focus on the formulation of governing equations and the calculation of material properties both theoretically and experimentally. With regard to the governing equations, significant work has been done with single-scale approaches (e.g. mixture theory), whereas traditional upscaling methods (e.g. homogenization, volume averaging) or multiscale equation-free approaches have received limited attention. The underlying concepts, strengths, and limitations of each approach, as well as examples of use in the field of biomaterials are presented. The current status of knowledge regarding the dependence of macroscopic material properties on the volume fractions, geometry, and intrinsic material properties of the constituent phases (cells, extracellular matrix and fluid) is also presented. The observation of conformational changes that occur at finer levels of the structural hierarchy during momentum transport, the correlation of macro-properties with geometrical and topological features of materials with heterogeneous and anisotropic microstructure, as well as the determination of dynamic material properties are among important challenges for future research.

摘要

流固相互作用以多种方式强烈影响细胞生物介质的结构和功能,如组织、生物膜和细胞包埋凝胶。数学模型和计算机模拟是深入了解这些相互作用、解释实验观察结果以及设计新型工艺和生物材料的重要工具。本文对细胞生物介质中动量传输的理论建模进行了全面综述,并重点介绍了在理论和实验上对控制方程的构建和材料特性的计算方面的有前景的研究方向。就控制方程而言,已经在单尺度方法(例如混合物理论)方面做了大量工作,而传统的粗化方法(例如均匀化、体积平均)或多尺度无方程方法则受到较少关注。本文介绍了每种方法的基本概念、优缺点,以及在生物材料领域的应用实例。还介绍了关于宏观材料特性对组成相(细胞、细胞外基质和流体)的体积分数、几何形状和固有材料特性的依赖性的现有知识状况。在动量传输过程中,在结构层次的更细水平上发生构象变化的观察,宏观特性与具有不均匀和各向异性微观结构的材料的几何和拓扑特征的相关性,以及动态材料特性的确定,这些都是未来研究的重要挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验