Suppr超能文献

无参考转录事件推断在单细胞数据中的癌细胞。

Reference-free inferring of transcriptomic events in cancer cells on single-cell data.

机构信息

Department of Computer Science, Ozyegin University, Istanbul, Turkey.

出版信息

BMC Cancer. 2024 May 20;24(1):607. doi: 10.1186/s12885-024-12331-5.

Abstract

BACKGROUND

Cancerous cells' identity is determined via a mixture of multiple factors such as genomic variations, epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expression as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the alignment of the sequences to a reference.

RESULTS

Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused events systematically in a classic transcriptome analysis pipeline where these events are considered as indicators for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect to the immune microenvironment.

CONCLUSIONS

Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lincRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated events.

摘要

背景

癌细胞的特征是由多种因素决定的,如基因组变异、表观遗传和转录调控的变异。转录组表达的差异以及肽结构的异常决定了表型的差异。因此,批量 RNA-seq 和最近的单细胞 RNA-seq(scRNA-seq)数据对于识别致病差异很重要。在这种情况下,我们依赖于序列的 k-mer 分解来详细识别致病变异,而不需要参考,因此优于更传统的基于序列与参考对齐的下一代测序(NGS)分析技术。

结果

通过我们的无比对分析,在食管和胶质母细胞瘤患者中,多个不同位置(重复序列、基因间区、外显子、内含子)和多种不同形式(融合、多聚腺苷酸化、剪接等)的高频变异都可以被发现。此外,我们还在经典的转录组分析管道中系统地分析了不太集中的事件的重要性,这些事件被认为是肿瘤预后、肿瘤预测、肿瘤新抗原推断以及与免疫微环境的关系的指标。

结论

我们的结果表明,食管癌(ESCA)和胶质母细胞瘤的过程可以通过致病微生物 RNA、重复序列、新的剪接变体和长基因间非编码 RNA(lincRNA)来解释。我们期望我们对无参考过程和分析的应用将有助于肿瘤和正常样本差异 scRNA-seq 分析,从而为主要的癌症相关事件提供更全面的方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/009d/11107047/077235b8146a/12885_2024_12331_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验