Suppr超能文献

一种在显微成像中识别急性淋巴细胞白血病的可靠方法。

A reliable approach for identifying acute lymphoblastic leukemia in microscopic imaging.

作者信息

Makem Mimosette, Tamas Levente, Bușoniu Lucian

机构信息

Signal, Image, and Systems Laboratory, Department of Medical and Biomedical Engineering, HTTTC EBOLOWA, University of Ebolowa, Ebolowa, Cameroon.

Department of Automation, Technical University of Cluj-Napoca, Cluj-Napoca, Romania.

出版信息

Front Artif Intell. 2025 Jul 17;8:1620252. doi: 10.3389/frai.2025.1620252. eCollection 2025.

Abstract

Leukemia is a deadly disease, and the patient's recovery rate is very dependent on early diagnosis. However, its diagnosis under the microscope is tedious and time-consuming. The advancement of deep convolutional neural networks (CNNs) in image classification has enabled new techniques in automated disease detection systems. These systems serve as valuable support and secondary opinion resources for laboratory technicians and hematologists when diagnosing leukemia through microscopic examination. In this study, we deployed a pre-trained CNN model (MobileNet) that has a small size and low complexity, making it suitable for mobile applications and embedded systems. We used the L1 regularization method and a novel dataset balancing approach, which incorporates HSV color transformation, saturation elimination, Gaussian noise addition, and several established augmentation techniques, to prevent model overfitting. The proposed model attained an accuracy of 95.33% and an F1 score of 0.95 when evaluated on the held-out test set extracted from the C_NMC_2019 public dataset. We also evaluated the proposed model by adding zero-mean Gaussian noise to the test images. The experimental results indicate that the proposed model is both efficient and robust, even when subjected to additional Gaussian noise. The comparison of the proposed MobileNet_M model's results with those of ALNet and various other existing models on the same dataset underscores its superior efficacy. The code is available for reproducing the experimental results at https://tamaslevente.github.io/ALLM/.

摘要

白血病是一种致命疾病,患者的康复率很大程度上依赖于早期诊断。然而,在显微镜下对其进行诊断既繁琐又耗时。深度卷积神经网络(CNN)在图像分类方面的进展使得自动疾病检测系统中出现了新技术。当通过显微镜检查诊断白血病时,这些系统为实验室技术人员和血液学家提供了有价值的支持和辅助诊断资源。在本研究中,我们部署了一个预训练的CNN模型(MobileNet),该模型体积小、复杂度低,适用于移动应用和嵌入式系统。我们使用L1正则化方法和一种新颖的数据集平衡方法,该方法结合了HSV颜色变换、饱和度消除、高斯噪声添加以及几种既定的增强技术,以防止模型过拟合。在从C_NMC_2019公共数据集中提取的留出测试集上进行评估时,所提出的模型达到了95.33%的准确率和0.95的F1分数。我们还通过向测试图像添加零均值高斯噪声来评估所提出的模型。实验结果表明,即使受到额外的高斯噪声影响,所提出的模型仍然高效且稳健。将所提出的MobileNet_M模型在同一数据集上的结果与ALNet和其他各种现有模型的结果进行比较,突出了其卓越的有效性。代码可在https://tamaslevente.github.io/ALLM/获取,用于重现实验结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3138/12310707/2080b210e59f/frai-08-1620252-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验