Suppr超能文献

锂离子电池富镍正极全电池中的热失控机制:多向串扰的作用

Thermal Runaway Mechanism in Ni-Rich Cathode Full Cells of Lithium-Ion Batteries: The Role of Multidirectional Crosstalk.

作者信息

Jo Sugeun, Seo Sungjae, Kang Song Kyu, Na Ikcheon, Kunze Sebastian, Song Munsoo, San Hwang, Woo Sung Pil, Kim SoHee, Kim Won Bae, Lim Jongwoo

机构信息

Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80 Jigok-ro 127 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37637, Republic of Korea.

出版信息

Adv Mater. 2024 Aug;36(31):e2402024. doi: 10.1002/adma.202402024. Epub 2024 May 30.

Abstract

Crosstalk, the exchange of chemical species between battery electrodes, significantly accelerates thermal runaway (TR) of lithium-ion batteries. To date, the understanding of their main mechanisms has centered on single-directional crosstalk of oxygen (O) gas from the cathode to the anode, underestimating the exothermic reactions during TR. However, the role of multidirectional crosstalk in steering additional exothermic reactions is yet to be elucidated due to the difficulties of correlative in situ analyses of full cells. Herein, the way in which such crosstalk triggers self-amplifying feedback is elucidated that dramatically exacerbates TR within enclosed full cells, by employing synchrotron-based high-temperature X-ray diffraction, mass spectrometry, and calorimetry. These findings reveal that ethylene (CH) gas generated at the anode promotes O evolution at the cathode. This O then returns to the anode, further promoting additional CH formation and creating a self-amplifying loop, thereby intensifying TR. Furthermore, CO, traditionally viewed as an extinguishing gas, engages in the crosstalk by interacting with lithium at the anode to form LiCO, thereby accelerating TR beyond prior expectations. These insights have led to develop an anode coating that impedes the formation of CH and O, to effectively mitigate TR.

摘要

串扰,即电池电极之间化学物质的交换,会显著加速锂离子电池的热失控(TR)。迄今为止,对其主要机制的理解主要集中在氧气(O)从阴极到阳极的单向串扰上,而低估了热失控期间的放热反应。然而,由于全电池相关原位分析的困难,多向串扰在引发额外放热反应中的作用尚未得到阐明。在此,通过使用基于同步加速器的高温X射线衍射、质谱和量热法,阐明了这种串扰触发自放大反馈的方式,这种反馈会在封闭的全电池中显著加剧热失控。这些发现表明,阳极产生的乙烯(CH)气体会促进阴极的析氧反应。然后,这种氧气返回阳极,进一步促进更多的CH生成,并形成一个自放大循环,从而加剧热失控。此外,传统上被视为灭火气体的CO,通过与阳极的锂相互作用形成LiCO参与串扰,从而比之前预期的更快地加速热失控。这些见解促使人们开发出一种阳极涂层,该涂层可阻止CH和O的形成,从而有效减轻热失控。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验