Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France.
Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
Plant Cell. 2024 Sep 3;36(9):3435-3450. doi: 10.1093/plcell/koae151.
MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro. To date, the MADS complexes characterized in angiosperm floral organ development contain at least 1 SEPALLATA protein. Whether DNA binding by SEPALLATA-containing dimeric MADS complexes is sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization-impaired SEPALLATA mutant proteins. Here, we used a combination of genome-wide-binding studies, high-resolution structural studies of the SEP3/AGAMOUS (AG) tetramerization domain, structure-based mutagenesis and complementation experiments in Arabidopsis (Arabidopsis thaliana) sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers can bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild-type-binding sites genome-wide, tetramerization is required not only for floral meristem determinacy but also for floral organ identity in the second, third, and fourth whorls.
MADS 转录因子是植物生殖和花发育的主要调控因子。SEPALLATA(SEP)亚家族的 MADS 转录因子是花器官发育所必需的,在花序结构和花分生组织的发育中发挥作用。SEPALLATAs 作为 MADS 复合物的组织者,在体外形成异二聚体和异四聚体。迄今为止,在被子植物花器官发育中表征的 MADS 复合物至少包含 1 种 SEPALLATA 蛋白。然而,含有 SEPALLATA 的二聚体 MADS 复合物的 DNA 结合是否足以启动花器官身份程序尚不清楚,因为在四聚化受损的 SEPALLATA 突变蛋白中仅观察到花分生组织确定性的缺陷。在这里,我们使用了全基因组结合研究、SEP3/AGAMOUS(AG)四聚化结构域的高分辨率结构研究、基于结构的诱变和拟南芥(Arabidopsis thaliana)中互补实验的组合,该实验中转化了编码四聚化突变体的 SEP3 版本的 sep1 sep2 sep3 和 sep1 sep2 sep3 ag-4 植物。我们证明,虽然 SEP3 异二聚体既能在体外又能在体内结合 DNA,并且在全基因组范围内识别大多数 SEP3 野生型结合位点,但四聚化不仅是花分生组织确定性所必需的,而且是第二、第三和第四轮花器官身份所必需的。