文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有过氧化物酶样活性的 Pt-Ru 双金属纳米簇用于抗菌治疗。

Pt-Ru bimetallic nanoclusters with peroxidase-like activity for antibacterial therapy.

机构信息

Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China.

School of Medicine, Shanghai University, Shanghai, China.

出版信息

PLoS One. 2024 May 21;19(5):e0301358. doi: 10.1371/journal.pone.0301358. eCollection 2024.


DOI:10.1371/journal.pone.0301358
PMID:38771804
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11108137/
Abstract

Drug-resistant bacteria arising from antibiotic abuse infections have always been a serious threat to human health. Killing bacteria with toxic reactive oxygen species (ROS) is an ideal antibacterial method for treating drug-resistant bacterial infections. Here, we prepared Pt-Ru bimetallic nanoclusters (Pt-Ru NCs) with higher peroxidase (POD)-like activity than Pt monometallic nanoclusters. Pt-Ru can easily catalyze the decomposition of H2O2 to produce ·OH, thereby catalyzing the transformation of 3,3',5,5'-tetramethylbiphenylamine (TMB) to blue oxidized TMB (oxTMB). We utilized the POD-like activity of the Pt-Ru NCs for antibacterial therapy. The results showed that at doses of 40 μg/mL and 16 μg/mL, the Pt-Ru NCs exhibited extraordinary antibacterial activity against E. coli and S. aureus, demonstrating the enormous potential of Pt-Ru NCs as antibacterial agents.

摘要

抗生素滥用导致的耐药菌一直是人类健康的严重威胁。利用毒性活性氧(ROS)杀死细菌是治疗耐药菌感染的理想抗菌方法。在这里,我们制备了具有比 Pt 单金属纳米团簇更高过氧化物酶(POD)样活性的 Pt-Ru 双金属纳米团簇。Pt-Ru 可以很容易地催化 H2O2 的分解产生·OH,从而催化 3,3',5,5'-四甲基联苯胺(TMB)向蓝色氧化 TMB(oxTMB)的转化。我们利用 Pt-Ru NCs 的 POD 样活性进行了抗菌治疗。结果表明,在 40μg/mL 和 16μg/mL 的剂量下,Pt-Ru NCs 对大肠杆菌和金黄色葡萄球菌表现出非凡的抗菌活性,表明 Pt-Ru NCs 作为抗菌剂具有巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/d8225befa666/pone.0301358.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/1b13bde4fc2c/pone.0301358.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/4d876d1acf2e/pone.0301358.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/7e68374855ff/pone.0301358.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/bdd88ffdccf1/pone.0301358.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/28480070957a/pone.0301358.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/9428dafb9807/pone.0301358.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/d8225befa666/pone.0301358.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/1b13bde4fc2c/pone.0301358.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/4d876d1acf2e/pone.0301358.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/7e68374855ff/pone.0301358.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/bdd88ffdccf1/pone.0301358.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/28480070957a/pone.0301358.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/9428dafb9807/pone.0301358.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/11108137/d8225befa666/pone.0301358.g007.jpg

相似文献

[1]
Pt-Ru bimetallic nanoclusters with peroxidase-like activity for antibacterial therapy.

PLoS One. 2024

[2]
Ultra-small and biocompatible platinum nanoclusters with peroxidase-like activity for facile glucose detection in real samples.

J Biomater Sci Polym Ed. 2020-4

[3]
Palladium/Platinum/Ruthenium Trimetallic Dendritic Nanozymes Exhibiting Enhanced Peroxidase-like Activity for Signal Amplification of Lateral Flow Immunoassays.

Nano Lett. 2024-7-10

[4]
One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin.

Chem Commun (Camb). 2014-11-7

[5]
Bioinspired construction of ATP/Co-Al-Zn LDH nanozyme with enhanced peroxidase-mimic performance for efficient bactericidal activity through membrane disruption.

Int J Biol Macromol. 2024-10

[6]
Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids.

J Colloid Interface Sci. 2008-6-1

[7]
Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose.

Int J Biol Macromol. 2021-3-1

[8]
Biocompatible Platinum Nanoclusters Prepared Using Bitter Gourd Polysaccharide for Colorimetric Detection of Ascorbic Acid.

Biomolecules. 2021-4-28

[9]
Deinococcus wulumuqiensis R12 synthesized silver nanoparticles with peroxidase-like activity for synergistic antibacterial application.

Biotechnol J. 2024-4

[10]
Lighting Up the Gold Nanoclusters via Host-Guest Recognition for High-Efficiency Antibacterial Performance and Imaging.

ACS Appl Mater Interfaces. 2019-9-25

本文引用的文献

[1]
Stability-Based Proteomics for Investigation of Structured RNA-Protein Interactions.

Anal Chem. 2024-2-11

[2]
Rational Design Strategies for Nanozymes.

ACS Nano. 2023-7-25

[3]
Tailoring the Surface and Composition of Nanozymes for Enhanced Bacterial Binding and Antibacterial Activity.

Small. 2023-10

[4]
Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application.

Adv Mater. 2024-3

[5]
Nanozymes: Definition, Activity, and Mechanisms.

Adv Mater. 2024-3

[6]
Nanozymes for Regenerative Medicine.

Small Methods. 2022-11

[7]
Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial.

Molecules. 2022-8-25

[8]
How to Define a Nanozyme.

ACS Nano. 2022-5-24

[9]
Therapeutic lipid-coated hybrid nanoparticles against bacterial infections.

RSC Adv. 2020-2-27

[10]
Risk Factors for Mortality Among Critical Acute Pancreatitis Patients with Carbapenem-Resistant Organism Infections and Drug Resistance of Causative Pathogens.

Infect Dis Ther. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索