Suppr超能文献

使用贝叶斯网络回归模型识别生物表型中的微生物驱动因素。

Identifying microbial drivers in biological phenotypes with a Bayesian network regression model.

作者信息

Ozminkowski Samuel, Solís-Lemus Claudia

机构信息

Department of Statistics and Wisconsin Institute for Discovery University of Wisconsin-Madison Madison Wisconsin USA.

Department of Plant Pathology and Wisconsin Institute for Discovery University of Wisconsin-Madison Madison Wisconsin USA.

出版信息

Ecol Evol. 2024 May 20;14(5):e11039. doi: 10.1002/ece3.11039. eCollection 2024 May.

Abstract

In Bayesian Network Regression models, networks are considered the predictors of continuous responses. These models have been successfully used in brain research to identify regions in the brain that are associated with specific human traits, yet their potential to elucidate microbial drivers in biological phenotypes for microbiome research remains unknown. In particular, microbial networks are challenging due to their high dimension and high sparsity compared to brain networks. Furthermore, unlike in brain connectome research, in microbiome research, it is usually expected that the presence of microbes has an effect on the response (main effects), not just the interactions. Here, we develop the first thorough investigation of whether Bayesian Network Regression models are suitable for microbial datasets on a variety of synthetic and real data under diverse biological scenarios. We test whether the Bayesian Network Regression model that accounts only for interaction effects (edges in the network) is able to identify key drivers (microbes) in phenotypic variability. We show that this model is indeed able to identify influential nodes and edges in the microbial networks that drive changes in the phenotype for most biological settings, but we also identify scenarios where this method performs poorly which allows us to provide practical advice for domain scientists aiming to apply these tools to their datasets. BNR models provide a framework for microbiome researchers to identify connections between microbes and measured phenotypes. We allow the use of this statistical model by providing an easy-to-use implementation which is publicly available Julia package at https://github.com/solislemuslab/BayesianNetworkRegression.jl.

摘要

在贝叶斯网络回归模型中,网络被视为连续响应的预测因子。这些模型已成功应用于脑研究,以识别大脑中与特定人类特征相关的区域,然而它们在微生物组研究中阐明生物表型中微生物驱动因素的潜力仍然未知。特别是,与脑网络相比,微生物网络由于其高维度和高稀疏性而具有挑战性。此外,与脑连接组研究不同,在微生物组研究中,通常期望微生物的存在对响应(主效应)有影响,而不仅仅是相互作用。在这里,我们首次全面研究了贝叶斯网络回归模型在各种生物场景下的各种合成数据和真实数据上是否适用于微生物数据集。我们测试仅考虑相互作用效应(网络中的边)的贝叶斯网络回归模型是否能够识别表型变异性中的关键驱动因素(微生物)。我们表明,对于大多数生物环境,该模型确实能够识别驱动表型变化的微生物网络中的有影响的节点和边,但我们也确定了该方法表现不佳的场景,这使我们能够为旨在将这些工具应用于其数据集的领域科学家提供实用建议。BNR模型为微生物组研究人员提供了一个框架,以识别微生物与测量表型之间的联系。我们通过提供一个易于使用的实现来允许使用这个统计模型,该实现是一个公开可用的Julia包,可在https://github.com/solislemuslab/BayesianNetworkRegression.jl上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f672/11106058/dc7a8650d728/ECE3-14-e11039-g047.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验